Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyễn minh

cho a,b,c>0 thỏa mãn a+b+c=3. CMR: \(\frac{1}{2ab^2+1}+\frac{1}{2bc^2+1}+\frac{1}{2ca^2+1}\ge1\)

Akai Haruma
31 tháng 7 2019 lúc 21:18

Lời giải:

Ta thấy:

\(\text{VT}=\frac{c^2}{2ab^2c^2+c^2}+\frac{a^2}{2bc^2a^2+a^2}+\frac{b^2}{2ca^2b^2+b^2}\)

Áp dụng BĐT Bunhiacopxky:

\(\text{VT}(2ab^2c^2+c^2+2bc^2a^2+a^2+2ca^2b^2+b^2)\geq (c+a+b)^2\)

\(\Leftrightarrow \text{VT}\geq \frac{(a+b+c)^2}{2abc(ab+bc+ac)+a^2+b^2+c^2}(*)\)

Áp dụng BĐT Am-GM:

\(3=a+b+c\geq 3\sqrt[3]{abc}\Rightarrow abc\leq 1\)

\(\Rightarrow 2abc(ab+bc+ac)\leq 2(ab+bc+ac)\)

\(\Rightarrow \frac{(a+b+c)^2}{2abc(ab+bc+ac)+a^2+b^2+c^2}\geq \frac{(a+b+c)^2}{2(ab+bc+ac)+a^2+b^2+c^2}=1(**)\)

Từ \((*); (**)\Rightarrow \text{VT}\geq 1\)

Ta có đpcm. Dấu "=" xảy ra khi $a=b=c=1$

Akai Haruma
31 tháng 7 2019 lúc 21:22

Cách khác bằng AM-GM:

\(\text{VT}=3-\left(\frac{2ab^2}{2ab^2+1}+\frac{2bc^2}{2bc^2+1}+\frac{2ca^2}{2ca^2+1}\right)(1)\)

Áp dụng BĐT AM-GM:

\(\frac{2ab^2}{2ab^2+1}+\frac{2bc^2}{2bc^2+1}+\frac{2ca^2}{2ca^2+1}=\frac{2ab^2}{ab^2+ab^2+1}+\frac{2bc^2}{bc^2+bc^2+1}+\frac{2ca^2}{ca^2+ca^2+1}\)

\(\leq \frac{2ab^2}{3\sqrt[3]{a^2b^4}}+\frac{2bc^2}{3\sqrt[3]{b^2c^4}}+\frac{2ca^2}{3\sqrt[3]{c^2a^4}}=\frac{2}{3}(\sqrt[3]{ab^2}+\sqrt[3]{bc^2}+\sqrt[3]{ca^2})\)

\(\leq \frac{2}{3}\left(\frac{a+b+b}{3}+\frac{b+c+c}{3}+\frac{c+a+a}{3}\right)=\frac{2}{3}(a+b+c)=2(2)\)

Từ \((1);(2)\Rightarrow \text{VT}\geq 3-2=1\) (đpcm)

nguyễn minh
31 tháng 7 2019 lúc 17:20

dùng bđt bunhia nha

nguyễn minh
31 tháng 7 2019 lúc 17:20

Các câu hỏi tương tự
Trần Huỳnh Tú Trinh
Xem chi tiết
Văn Thắng Hồ
Xem chi tiết
Nguyễn Thu Trà
Xem chi tiết
Trần Minh Hiển
Xem chi tiết
Văn Thắng Hồ
Xem chi tiết
WANNA ONE
Xem chi tiết
Phác Chí Mẫn
Xem chi tiết
bach nhac lam
Xem chi tiết
Hoàng Thị Hồi
Xem chi tiết