dùng cô si nhé, bài này dễ mà :)
có
\(b^2+c^2\ge2bc\\ =>\dfrac{a^2}{b^2+c^2}\le\dfrac{a^2}{2\sqrt{b^2c^2}}\\ < =>\dfrac{a^2}{b^2+c^2}\le\dfrac{a^2}{2bc}\)
cmtt
\(=>\left\{{}\begin{matrix}\dfrac{b^2}{c^2+a^2}\le\dfrac{b^2}{2ac}\\\dfrac{c^2}{a^2+b^2}\le\dfrac{c^2}{2ab}\end{matrix}\right.\)
có
\(\dfrac{a^2}{b^2+c^2}+\dfrac{b^2}{c^2+a^2}+\dfrac{c^2}{a^2+b^2}\le\dfrac{a^2}{2bc}+\dfrac{b^2}{2ac}+\dfrac{c^2}{2ab}\\ < =>\dfrac{a^2}{b^2+c^2}+\dfrac{b^2}{a^2+c^2}+\dfrac{c^2}{a^2+b^2}\le\dfrac{a^3+b^3+c^3}{2abc}\left(đpcm\right)\)
đơn giản thế thôi, chúc may mắn :)