Cho \(a=b=c=1\)
\(\Rightarrow\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2+\left(c+\frac{1}{c}\right)^2=12< 33\)
Đề sai
Cho \(a=b=c=1\)
\(\Rightarrow\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2+\left(c+\frac{1}{c}\right)^2=12< 33\)
Đề sai
Bài 1: Với a,b,c khác 0. CMR: \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c^{ }}\)
Bài 2: CMR: Nếu \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\) và a + b +c = abc thì \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\) với điều kiện a,b,c khác 0 và a+b+c khác 0.
Cho \(-1< a,b,c< 1;a+b+c=0\)
CMR:\(a^2+b^2+c^2< 2\)
Cho a,b,c là ba số khác nhau và a+b+c=0. Cmr:\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2\)
Cho a,b,c>0 và ab+bc+ca=3
CMR: \(\dfrac{1}{a^2+b^2+1}+\dfrac{1}{b^2+c^2+1}+\dfrac{1}{c^2+a^2+1}\le1\)
Cho a,b,c dương. Biết a+b+c=1
CMR:
(a+1/a)²+(b+1/b)²+(c+1/c)²>33
cho các số a b c thỏa mãn a+b+c=3/2 cmr a-1/a^2 + b-1/b^2+c-1/c^2 <= 3/4
Cho \(\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{2}{c}=0\) với a,b >0 .
CMR \(\dfrac{a+c}{2a-c}+\dfrac{b+c}{2b-c}>4\)
Cho 1/a +1/b + 1/c =2 và a+b+c=abc
Cmr : 1/a2 +1/b2 +1/c2 = 2
Cho a, b, c > 0 . CMR:
\(\frac{1}{a+b+c}\ge\frac{a^3}{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}+\frac{b^3}{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}+\frac{c^3}{\left(2c^2+a^2\right)\left(2c^2+a^2\right)}\)