Bài 4: Cho tam giác ABC có AB < BC. Tia phân giác của ABC cắt AC tại M. Trên cạnh BC lấy điểm E sao cho BE = BA. a) Chứng minh rằng: BAM = BEM b) Chứng minh rằng: AM = ME c) Chứng minh rằng: MB là tia phân giác của AME d) Chứng minh rằng: AE ⊥ BM e) Chứng minh rằng: AMB ABM
Cho tam giác ABC vuông tại A, trên cạnh BC lấy điểm D sao cho BD=AB. Qua D kẻ đường thẳng vuông góc với BC, cắt cạnh AC tại E.
a) Chứng minh: tam giác BAE = tam giác BDE. Suy ra: AE = ED.
b) Gọi F là giao điểm của tia DE và tia BA. Chứng minh: tam giác FEC cân.
c) Gọi K là trung điểm của FC. Chứng minh: B, E, K thẳng hàng.
Cho tam giác ABC cân tại A. Trên 2 cạnh AB và AC lần lượt lấy hai điểm M và N sao cho AM = AN. Kẻ AH vuông góc với BC, H ∈ BC
a. Chứng minh tam giác ABH = tam giác ACH
b. Chứng minh BN=CM
c. Nếu cho cạnh AH=8cm, AB= 10cm. Tính cạnh BC
Cho tam giác ABC vuông tại A, AB=6cm, AC=8cm, BM là đường phân giác. Kẻ MK vuông góc với BC tại K.
a) Tính độ dài cạnh BC.
b) CM: AM=KM.
c) Kẻ AD vuông góc vs BC tại D. CM: Tia AK là tia phân giác của góc DAC.
d) CM: AB+AC<BC+AD.
Cho ABC vuông tại A. Tia phân giác của góc B cắt cạnh AC tại D. Trên cạnh BC lấy điểm H sao cho BH = BA.
a) Chứng minh ABD = HBD.
b) Chứng minh DH BC
c) Chứng minh AH BD
d) Giả sử = 600. Tính số đo
Cho tam giác ABC cân tại A. AH vuông góc với BC(H € BC)
a) CM HB=HC
b) Trên tia đối BC lấy điểm M. Trên tia đối CB lấy điểm N sao cho BM=CN. Kẻ BH vuông góc với AM tại E, CF vuông góc với AN tại F. Gọi I là giao điểm của EB và FC. CM A, H, I thẳng hàng
Bài 2. Cho D ABC cân tại A. Phân giác AM (M Î BC), Vẽ BH ^ AC (H Î AC), CK ^ AB (K Î AB).
a. Chứng minh rằng D AMB = D AMC.
b. Chứng minh rằng BH = CK.
Bài 3. Cho tam giác ABC, điểm D thuộc cạnh BC. Gọi M là trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME = MB. Trên tia đối của tia MC lấy F sao cho MF = MC. Chứng minh:
a) AE = BD;
b) AF // BC.
c) Ba điểm A, E, F thẳng hàng.
Bài 4. Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC. Tia phân giác của góc HAB cắt BC tại E, tia phân giác của góc HAC cắt BC tại D. Chứng minh rằng AB+AC=BC+DE.
ho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm K sao cho BK=BA. Gọi M là trung điểm của đoạn thẳng AK. a) Chứng minh: ∆AMB=∆KMB b) Đường thẳng BM cắt đường thẳng AC tại D. Chứng minh: DK vuông góc với BC. c) Trên tia đối của tia AB lấy điểm H sao cho ah=kc chứng minhh d k thẳng hàng