Chương II : Tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngan Nguyen
Cho ∆ABC vuông tại A có BC=15cm, BA= 8cm. a) Tính Ác b) Trên BC lấy E sao cho BA=BE. Kẻ BH vuông góc với AE tại H. Chứng minh HA=HE c) Trên tia đối tia AB lấy D sao cho AD=EC. Chứng minh AC=DE d) BH vuông góc với DC Mình cần gấp
Thu Thao
10 tháng 1 2021 lúc 17:00

Bạn nên ktra lại con số 15cm

a/ Áp dụng định lí Pythagoras cho t/g ABC vuông tại A có

\(AB^2+AC^2=BC^2\)

=> \(AC=\sqrt{161}\) (cm)

b/ t/g ABH vuông tại H và t/g EBH vuông tại H có

AB = EB

BH : chung

=> t/g ABH=t/g EBH (ch-cgv)

=> HA = HE (2 cạnh t/ứ)

c/ Có \(\widehat{BAH}=\widehat{BEH}\) (do t/g ABH = t/g EBH)

=> \(180^o-\widehat{BAH}=180^o-\widehat{BEH}\)

=> \(\widehat{EAD}=\widehat{AEC}\)

=> t/g AEC = t/g EAD

=> AC = DE

d/

AB = BEAD = EC

=> AB + AD = BE + EC

=> BD = BC=> t/g BCD cân tại B

Có t/g ABH = t/g EBH

=> \(\widehat{ABH}=\widehat{EBH}\)

=> BH là pg góc ABEHay BH là pg góc DBCXét t/g BDC có BH là đường pg

=> BH đồng thời là đường cao

=> BH ⊥ DC


Các câu hỏi tương tự
Tzngoc
Xem chi tiết
Tzngoc
Xem chi tiết
Nguyen Phuong Nga
Xem chi tiết
Ghi Manh
Xem chi tiết
khánh nguyễn
Xem chi tiết
chi vũ
Xem chi tiết
Hoàng Giang
Xem chi tiết
kyo1980
Xem chi tiết
Nguyễn Phạm Công Viễn
Xem chi tiết