a: Xét tứ giác MBPA có
N là trung điểm chung của MP và AB
nên MBPA là hình bình hành
b: Xet tứ giác PACM có
MP//AC
MP=AC
góc MCA=90 độ
Do đó: PACM là hình chữ nhật
a: Xét tứ giác MBPA có
N là trung điểm chung của MP và AB
nên MBPA là hình bình hành
b: Xet tứ giác PACM có
MP//AC
MP=AC
góc MCA=90 độ
Do đó: PACM là hình chữ nhật
Cho tam giác ABC vuông tại C. Gọi M,N lần lượt là trung điểm của các cạnh BC và AB. Gọi P là điểm đối xứng của M qua N.
a. Chứng minh tứ giác MBPA là hình bình hành
b. Chứng minh tứ giác PACM là hình chữ nhật
c. Đường thẳng CN cắt PB tại Q. Chứng minh BQ = 2PQ
d. Tam giác ABC cần có thêm điều kiện gì thì hình chữ nhật PACM là hình vuông?
Cho tam giác ABC vuông tại C.Gọi M,N lần lượt là trung điểm của cạnh BC,AB.Gọi P là điểm đối xứng của M qua N.
a)chứng minh tứ giác MBPA là hình bình hành
b)chứng minh PACM là hình chữ nhật
c)đường thẳngCN cắt PB tại Q. Chứng minh BQ=2PQ
d)tam giác ABC cần thêm điều kiện gì để hình chữ nhật PACM là hình vuông ?
Cho tam giác ABC có ba góc nhọn (AB<AC), đường cao AH. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC, BC ; MN cắt AH tại I.
a) Chứng minh I là trung điểm của AH.
b) Lấy điểm Q đối xứng với P qua N. Chứng minh tứ giác ABPQ là hình bình hành.
c) Xác định dạng của tứ giác MHPN.
d) Gọi K là trung điểm của MN, O là giao điểm của CK và QP, F là giao điểm của MN và QC. Chứng minh B, O, F thẳng hàng.
. Cho ABC. Gọi M, N, P lần lượt là trung điểm các cạnh AB, AC, BC.
⦁ Chứng minh: Tứ giác MNCB là hình thang, tứ giác BMNP là hình bình hành.
⦁ Gọi O là trung điểm của MN. Chứng minh: 3 điểm A, O, P thẳng hàng.
⦁ Trên tia đối của tia NP lấy điểm F sao cho NF = NP. Trên tia đối của tia MP lấy điểm E sao cho ME = MP. Chứng minh: E đối xứng với F qua A.
⦁ ABC cần thêm điều kiện gì để BE + CF = BC. Chứng minh.
Cho tam giác ABC vuông tại A. Gọi D, E, F lần lượt là trung điểm của AB, BC, AC. a)Chứng minh: Tứ giác ADEF là hình chữ nhật. b)Gọi M là điểm đối xứng của E qua D. Chứng minh: Tứ giác BMAE là hình thôi. c)Cho AB=3cm , BC=5cm. Tính Sabc d)Gọi O là giao điểm của AE và DF. Đường thẳng CO cắt EF tại G. Chứng minh: OG=1:6 CM
ho tam giác ABC có ba góc nhọn (AB < AC), đường cao AH. Gọi M, N, P là trung điểm của các cạnh AB, AC, BC, MN cắt AC tại I. a) Chứng minh I là trung điểm của AH b) Lấy điểm Q đối xứng với P qua N. Chứng minh tứ giác ABPQ là hình bình hành. c) Xác định dạng của tứ giác MHPN d) Gọi K là trung điểm của MN, O là giao điểm của CK và QP, F là giao điểm của MN và QC. Chứng minh B, O, F thẳng hàng
Cho tam giác ABC vuông tại A. Gọi M là trung điểm của AC. Gọi D là điểm đối xứng với B qua M.
a) Chứng minh tứ giác ABCD là hình bình hành.
b) Gọi N là điểm đối xứng với B qua A. Chứng minh tứ giác ACDN là hình chữ nhật.
c) Vẽ đường thẳng qua A song song với MN, cắt BC ở K. Chứng minh KC=2KB.
Bài 1. Cho tam giác ABC có ba góc nhọn (AB<AC), đường cao AH. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC, BC ; MN cắt AH tại I.
a) Chứng minh I là trung điểm của AH.
b) Lấy điểm Q đối xứng với P qua N. Chứng minh tứ giác ABPQ là hình bình hành.
c) Xác định dạng của tứ giác MHPN.
d) Gọi K là trung điểm của MN, O là giao điểm của CK và QP, F là giao điểm của MN và QC. Chứng minh B, O, F thẳng hàng.
Bài 2: Cho hình chữ nhật MNPQ. Gọi A là chân đường vuông góc hạ từ P đến NQ. Gọi B;C; D lần lượt là trung điểm của PA; AQ; MN.
a) Chứng minh rằng: BC//MN
b) Chứng minh rằng tứ giác CDNB là hình bình hành
c) Gọi E là giao điểm của NB và PC, gọi F là chân đường vuông góc hạ từ D đến NB. Chứng minh rằng tứ giác FDCE là hình chữ nhật
d) Hạ CG vuông góc với MN tại G; BC cắt NP tại H, chứng minh rằng DB cắt GH tại trung điểm mỗi đường.
Bài 3: Cho hình bình hành ABCD có AB = 8 cm, AD = 4 cm.Gọi M, N lần lượt là trung điểm của AB và CD.
a. Chứng minh tứ giác AMCN là hình bình hành. Hỏi tứ giác AMND là hình gì?
b. Gọi I là giao điểm của AN và DM , K là giao điểm của BN và CM . Tứ giác MINK là hình gì?
c. Chứng minh IK // CD
Cho AABC vuông tại A, điểm M là trung điểm của BC. Gọi D và E lần lượt là hình chiếu của M trên AB và AC a) Chứng minh: tứ giác ADME là hình chữ nhật. b) Lấy điểm K đối xứng với M qua D. Tứ giác AEDK là hình gì? Vì sao? c) Chứng minh: tứ giác AMBK là hình thoi. d) Gọi I là điểm đối xứng với M qua E. Chứng minh: K đối xứng với I qua A.