Bổ sung đề: AB=6cm; AC=9cm
a: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
b: Ba tam giác này đồng dạng với nhau
Bổ sung đề: AB=6cm; AC=9cm
a: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
b: Ba tam giác này đồng dạng với nhau
Tam giác ABC có độ dài các cạnh là AB = 3cm, AC = 5cm, BC = 7cm. Tam giác A'B'C' đồng dạng với tam giác ABC và có chu vi bằng 55 cm
Hãy tính độ dài các cạnh của tam giác A'B'C' (làm tròn đến chữ số thập phân thứ hai) ?
Cho △ABC có AB =15cm , AC=20cm,BC =25cm.Trên AC lấy M sao ccho AM = 8cm , trên cạnh AB lấy điểm N sao cho AN = 6cm.CM:
a)△ABC ∼△ANM
b)Tính chu vi △AMN
c)Gọi I là giao điểm của BM và CN. CM:\(\dfrac{IM.IC}{IN.IB}=1\)
Giúp mik vs
Tam giác vuông ABC (\(\widehat{A}=90^0\)) có AB = 6cm, AC = 8cm và tam giác vuông A'B'C' (\(\widehat{A'}=90^0\)) có A'B' = 9cm, B'C' = 15 cm
Hỏi rằng hai tam giác vuông ABC và A'B'C' có đồng dạng với nhau không ? Vì sao ?
Cho tam giác ABC , có AB = 15 cm , AC = 18 cm. Trên các cạnh AB và AC lấy các điểm I và K sao cho AI = 3 cm , AK = 6 cm
a)Chứng minh IK//BC , từ đó suy ra tg AIK đồng dạng tam giác ABC ?
b)Từ K kẻ KL // AB ( I thuộc BC). Tứ giác BIKL là hình gì ? Rồi từ đó suy ra tg CKL đồng dạng với tam giác KAI
c)Tính CL và LB biết BC = 21 cm
Bài 1: Tam giác ABC và tam giác MNP đồng dạng, Biết
BC= 10; AC= 12. Tính số đo các góc C, M, N, P và độ dài cạnh NP.
Bài 2: Cho tam giác ABC có AB = 8cm, AC = 16cm. Điểm D thuộc cạnh AB sao cho BD
= 2cm. Điểm E thuộc cạnh AC sao cho CE = 13cm. Chứng minh rằng:
a) Δ AED ω ΔΑBC
b) ABE = ACD
Cho tam giác ABC vuông tại A có AB = 10cm; AC = 20cm. Trên cạnh AC lấy điểm M sao cho AM = 5cm
a)Tính độ dài BC, BM
b)Chứng minh \(\Delta\)ABC\(\sim\Delta\)AMB
. Cho △ ABC. M, N thuộc cạnh AC sao cho AM = MN = NC. Qua M kẻ đường thẳng song song với AB cắt BC tại P. Qua N kẻ đường thẳng song song với BC cắt AB tại Q. MP và QN cắt nhau tại K. Chứng minh rằng: △ MKN ∽ △ ABC, tìm tỷ số đồng dạng.
Bài 1: Cho ∆ABC có AB 15cm = ; AC 20cm = , lấy D trên đoạn AB sao cho AD 8cm = , lấy E trên đoạn AC sao cho AE 6cm = . Chứng minh rằng: a/ △ △ AED ABC ∽ b/ AED B = ; ADE C
Bài 2: Cho ∆ABC có AB 48cm = ; BC 36cm = ; AC 64cm = . Trên đoạn AB lấy D sao cho AD 32cm = . Trên đoạn AC lấy E sao cho AE 24cm = . a/ Chứng minh rằng △ △ ADE ACB ∽ . b/ ADE C = ; AED B = . c/ Tính độ dài đoạn DE .
Bài 3: Cho ∆MNP có MN 20 cm = ; MP 24cm = . Trên cạnh MN lấy điểm D sao cho MD 12cm = . Trên cạnh MP lấy điểm E sao cho ME 10cm = . Chứng minh rằng: a/ △ △ MEP MEN ∽ . b/△ △ MDE MPN ∽ .
Bài 4: Cho góc xSy xSy 180 ( ≠ °). Trên tia Sx lấy hai điểm A và B sao cho SA = 2 cm; AB = 5 cm. Trên tia Sy lấy 2 điểm C và D sao cho SC =2,5 cm và CD = 3,1 cm. Chứng minh rằng: a/ △ △ SAD SCB ∽ b/ △ △ SAC SDB
Cho \(\Delta\)A'B'C', \(\Delta\)ABC có A'M', AM là trung tuyến. Cho biết \(\dfrac{A'B'}{AB}\)=\(\dfrac{A'M'}{AM}\)=\(\dfrac{A'C'}{AC}\). Chứng minh: \(\Delta\)A'B'C' đồng dạng với \(\Delta\)ABC