Cho tam giác ABC,BD và CE là 2 đường cao của tam giác ABC. DF và EG là 2 đường cao của tam giác ADF. CHỨNG MINH :
A. 2 tam giác ADE và ABC đồng dạng
B.FG song song với BC
Cho tam giác ABC nhọn hai đường cao BD và CE cắt nhau tại H.
a) Chứng minh tam giác ABD đồng dạng tam giác ACE
b) Chứng minh BH.HD = CH.HE
c) Chứng minh Chứng tam giác ADE đồng dạng tam giác ABC
d) Gọi F là giao điểm của AH và BC, K là trung điểm của AH. Chứng minh: BF.CF = KF2 – HD2
Cho tam giác ABC nhọn hai đường cao BD và CE cắt nhau tại H.
a) Chứng minh tam giác ABD đồng dạng tam giác ACE
b) Chứng minh BH.HD = CH.HE
c) Chứng minh
ADE ∽
ABC
d) Gọi F là giao điểm của AH và BC, K là trung điểm của AH. Chứng minh: BF.CF = KF2 – HD2
Cho tam giác ABC nhọn có hai đường cao BD và CE.
a, C/minh: Tam giác ABD đồng dạng tam giác ACE
b, C/minh: Tam giác ADE đồng dạng tam giác ABC
c, Gọi H là giao điểm của BD và CE, K là giao điểm của AH và BC. CMR: \(AH\perp BC\) và CH.CE = BC. CK
d, Chứng minh: \(BH.BD+CH.CE=BC^2\)
Cho △ ABC nhọn ( AB<AC). Các đường cao BD và CE cắt nhau tại H
a) Chứng minh : AE.AB=AD.AC
b) Chứng minh: △ ADE đồng dạng △ ABC
c) Giả sử BAC=450. So sánh S△ADE và S△BEDC
d) Gọi M,N lần ượt là giao điểm của DE với AH và BC. C/m: MN.NE=ME.ND
Cho tam giác ABC có 3 góc đều nhọn ,các đường cao BD,CE cắt nhau tại H
a,Chứng minh AD.AC = AE . AB
b,Chứng minh tam giác ADE đồng dạng vs tam giác ABC
Gọi I là giao điểm của AH ,BC chứng minh \(\frac{HI}{AI}+\frac{HD}{BD}+\frac{HE}{CE}=1\)
Cho tam giác ABC, các đường cao BD, CE. CMR:
a. Tam giác ABD đồng dạng vs tam giác ACE.
b. Tam giác ADE đồng dạng vs tam giác ABC.
Cho tam giác ABC có 3 góc nhọn các đường cao BD, CE
a) CM: tam giác ABD đồng dạng với tam giác ACE
b) CM: tam giác ADE đồng dạng tam giác ABC
c) CM: Hai đường thẳng BC và DE cắt nhau tại F. CM: FD.FE=FB.FC
Cho tam giác nhọn ABC các đường cao BD và CE cắt nhau tại H.
a, C/minh: \(\Delta ABC\sim\Delta ADE\)
b, C/minh: \(BC^2=BD.BH+CE.CH\)