Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
le ngoc anh

Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.

a/. Ch/m : ΔAMB = ΔNMC

b/. Vẽ CD AB (D AB). So sánh góc ABC và góc BCN. Tính góc DCN.

c/. Vẽ AH BC (H BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.

Ch/m : BI = CN.

nguyen thi vang
11 tháng 2 2018 lúc 10:26

A B C D M H I N

a) Xét \(\Delta AMB,\Delta NMC\) có:

\(AM=MN\)(M là trung điểm của AN)

\(\widehat{AMB}=\widehat{NMC}\) (đối đỉnh)

\(BM=MC\)(M là trung điểm của BC)

=> \(\Delta AMB=\Delta NMC\left(c.g.c\right)\) (*)

b) Từ (*) suy ra :

\(\widehat{ABM}=\widehat{NCM}\) (2 góc tương ứng)

Mà thấy : 2 góc này ở vị trí so le trong

=> \(AB//NC\)

Hay : \(DB//NC\)

Ta có : \(\widehat{BDC}+\widehat{DCN}=180^{^O}\left(kềbù\right)\)

=> \(90^{^0}+\widehat{DCN}=180^{^O}\)

=> \(\widehat{DCN}=180^{^O}-90^{^O}=90^{^O}\)

c) Xét \(\Delta ABH,\Delta IBH\) có :

\(AH=IH\left(gt\right)\)

\(\widehat{AHB}=\widehat{IHB}\left(=90^{^O}\right)\)

\(BH:Chung\)

=> \(\Delta ABH=\Delta IBH\left(c.g.c\right)\)

=> \(BA=BI\) (2 cạnh tương ứng) (1)

Ta thấy : Từ (*) => \(BA=CN\) (2 cạnh tương ứng) (2)

Từ (1) và (2) => \(BI=CN\left(=BA\right)\)

=> đpcm

Kudo Shinichi
11 tháng 2 2018 lúc 9:33

a) Xét \(\Delta AMB\)\(\Delta NMC\) có:

\(AM=NM\) (gt)

\(\widehat{AMB}=\widehat{NMC}\) (đối đỉnh)

\(MB=MC\) (gt)

suy ra: \(\Delta AMB=\Delta NMC\) (c.g.c)


Các câu hỏi tương tự
le ngoc anh
Xem chi tiết
Chung Lệ Đề
Xem chi tiết
ARMY BTS
Xem chi tiết
crewmate
Xem chi tiết
Thúy Ngân
Xem chi tiết
Minz Ank
Xem chi tiết
Huỳnh Kim Ngân
Xem chi tiết
Lệ Nguyễn Đoàn Nhật
Xem chi tiết
HA ANH
Xem chi tiết