Áp dụng bất đẳng thức tam giác ta có :
\(\Rightarrow\left\{{}\begin{matrix}b+c>a\\a+c>b\\a+b>c\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}ab+ac>a^2\\ba+bc>b^2\\ca+cb>c^2\end{matrix}\right.\)
Cộng vế theo vế ta được : 2 (ab + ac + bc ) > a2 + b2 + c2
Áp dụng BĐT tam giác ta được:
a + b > c
b + c > a
a + c > b
Suy ra: ac + bc > c^2 (1)
ab + ac > a^2 (2)
ab + bc > b^2 (3)
Lấy (1) + (2) + (3) ta được:
a^2 + b^2 + c^2 < 2(ab + bc + ca) (đpcm)