Ta có : \(\left(a+b-2c\right)^2+\left(b+c-2a\right)^2+\left(c+a-2b\right)^2=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)
\(\Leftrightarrow a^2+b^2+4c^2+2ab-4bc-4ac+b^2+c^2+4a^2+2bc-4ca-4ab+c^2+a^2+4b^2+2ac-4bc-4ab=...\)
\(\Leftrightarrow6a^2+6b^2+6c^2-6\left(ab+bc+ca\right)=a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\)
\(\Leftrightarrow6a^2+6b^2+6c^2-6\left(ab+bc+ca\right)-a^2+2ab-b^2-b^2+2bc-c^2-c^2+2ca-a^2=0\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow a=b=c\)
<=> Tam giác đó là tam giác đều .
Vậy ...