1) Cho a, b, c \(\ne\) 0 và a \(\ne\)b thỏa mãn a + b + c = 2 và (a2 - bc)(b - abc) = (b2 - ac)(a - abc). Tính S = \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
2) Cho a, b, c > 0. CMR: \(\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}\ge\frac{a^2+b^2+c^2}{2}\)
Làm được đến đâu thì làm nhé. Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!!
1/ \(\Leftrightarrow a^2b-a^3bc-b^2c+ab^2c^2=ab^2-ab^3c-a^2c+a^2bc^2\)
\(\Leftrightarrow ab\left(a-b\right)+c\left(a^2-b^2\right)=abc\left(a^2-bc-b^2+ac\right)\)
\(\Leftrightarrow\left(a-b\right)\left(ab+ac+bc\right)=abc\left[\left(a-b\right)\left(a+b\right)+c\left(a-b\right)\right]\)
\(\Leftrightarrow\left(a-b\right)\left(ab+bc+ca\right)=abc\left(a-b\right)\left(a+b+c\right)\)
\(\Leftrightarrow ab+bc+ca=abc\left(a+b+c\right)\)
\(\Leftrightarrow ab+bc+ca=2abc\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
\(\Rightarrow S=2^2=4\)
Câu 2:
\(P=\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}=\frac{a^4}{ab+ac}+\frac{b^4}{bc+ab}+\frac{c^4}{ac+bc}\)
\(P\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(a^2+b^2+c^2\right)}=\frac{a^2+b^2+c^2}{2}\)
Dấu "=" xảy ra khi \(a=b=c\)
Hoặc có thể dùng AM-GM:
\(\frac{a^3}{b+c}+\frac{1}{4}a\left(b+c\right)\ge a^2\) ; \(\frac{b^3}{c+a}+\frac{1}{4}b\left(c+a\right)\ge b^2\) ; \(\frac{c^3}{a+b}+\frac{1}{4}c\left(a+b\right)\ge c^2\)
Cộng vế với vế:
\(P+\frac{1}{2}\left(ab+bc+ca\right)\ge a^2+b^2+c^2\)
\(\Leftrightarrow P\ge a^2+b^2+c^2-\frac{1}{2}\left(ab+bc+ca\right)\ge\frac{a^2+b^2+c^2}{2}\)