Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho a,b,c>0 thỏa mãn a+b+c=1. CMR: \(P=\sqrt{\dfrac{ab}{c+ab}}+\sqrt{\dfrac{bc}{a+bc}}+\sqrt{\dfrac{ca}{b+ca}}\le\dfrac{3}{2}\)
Cho các số thực dương a, b, c thoả mãn: \(abc+a+b=3ab\). Chứng minh rằng: \(\sqrt{\dfrac{ab}{a+b+1}}+\sqrt{\dfrac{b}{bc+c+1}}+\sqrt{\dfrac{a}{ca+c+1}}\ge\sqrt{3}\)
Cho a,b,c >0 thỏa mãn abc=1. Chứng minh:
\(\dfrac{1}{\sqrt{ab+a+2}}+\dfrac{1}{\sqrt{bc+b+2}}+\dfrac{1}{\sqrt{ca+c+2}}\le\dfrac{3}{2}\)
Cho a, b, c à số dương thỏa mãn: ab+bc+ca=1. Tìm \(P_{min}=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}-\sqrt{\dfrac{1}{a^2}+1}-\sqrt{\dfrac{1}{b^2}+1}-\sqrt{\dfrac{1}{c^2}+1}\)
Cho a, b, c>0 thỏa mãn: abc=1. CM: \(\dfrac{1}{\sqrt{ab+a+2}}+\dfrac{1}{\sqrt{bc+b+2}}+\dfrac{1}{\sqrt{ca+c+2}}\le\dfrac{3}{2}\)
cho a,b,c dương thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\). tìm GTLN của \(P=\dfrac{1}{\sqrt{a^2-ab+b^2}}+\dfrac{1}{\sqrt{b^2-bc+c^2}}+\dfrac{1}{\sqrt{c^2-ca+a^2}}\)
Cho các số không âm a , b , c thỏa mãn không có 2 số nào đồng thời bằng 0 và \(a^2+b^2+c^2=2\left(ab+bc+ca\right)\)
Chứng minh rằng : \(\sqrt{\dfrac{ab}{a^2+b^2}}+\sqrt{\dfrac{bc}{b^2+c^2}}+\sqrt{\dfrac{ca}{c^2+a^2}}\ge\dfrac{1}{\sqrt{2}}\)
Cho a,b,c>0 t/m \(a^2+b^2+c^2=1\).
C/m \(\dfrac{1}{4-\sqrt{ab}}+\dfrac{1}{4-\sqrt{bc}}+\dfrac{1}{4-\sqrt{ca}}\le1\)
Cho a,b,c >0 tm abc=1, C/m
\(\dfrac{1}{\sqrt{a^5+b^2+ab+6}}+\dfrac{1}{\sqrt{b^5+c^2+bc+6}}+\dfrac{1}{\sqrt{c^5+a^2+ca+6}}\le1\)