b/ Ta có: \(\left(a+b-c\right)\left(b-c\right)\le0\)
\(\Leftrightarrow c^2+b^2-ac+ab\le2bc\)
Ta lại có: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\le a^2+4bc+3ac+ab\)
Giờ ta cần chứng minh:
\(a^2+4bc+3ac+ab\le9bc\)
\(\Leftrightarrow a^2+3ac+ab\le5bc\)
Cái này là đúng vì a, b, c là 3 cạnh của tam giác và \(a\le b\le c\)