Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
long nhat nguyen ba

Cho a,b,c khác 0 và thỏa mãn: 2ab+1 trên 2b=2bc+1 trên c=ac+1 trên a CMR:a=2b=c hoặc 4a^2.b^2.c^2=1

Akai Haruma
27 tháng 3 2020 lúc 23:08

Lời giải:

Theo đề bài ta có:

\(\frac{2ab+1}{2b}=\frac{2bc+1}{c}=\frac{ac+1}{a}\Leftrightarrow a+\frac{1}{2b}=2b+\frac{1}{c}=c+\frac{1}{a}\)

\(\Rightarrow \left\{\begin{matrix} a-2b=\frac{1}{c}-\frac{1}{2b}=\frac{2b-c}{2bc}\\ a-c=\frac{1}{a}-\frac{1}{2b}=\frac{2b-a}{2ab}\\ 2b-c=\frac{1}{a}-\frac{1}{c}=\frac{c-a}{ac}\end{matrix}\right.\)

Nhân theo vế:
\((a-2b)(a-c)(2b-c)=\frac{(2b-c)(2b-a)(c-a)}{4a^2b^2c^2}=\frac{(2b-c)(a-2b)(a-c)}{4a^2b^2c^2}\)

\(\Leftrightarrow (a-2b)(a-c)(2b-c)\left[1-\frac{1}{4a^2b^2c^2}\right]=0\)

$\Rightarrow (a-2b)(a-c)(2b-c)=0$ hoặc $1-\frac{1}{4a^2b^2c^2}=0$

TH1: $(a-2b)(a-c)(2b-c)=0$\(\Rightarrow \left\{\begin{matrix} a=2b\\ a=c\\ 2b=c\end{matrix}\right.\)

+Nếu $a=2b$ thì $\frac{2b-c}{2bc}=a-2b=0\Rightarrow 2b-c=0\Rightarrow 2b=c$

$\Rightarrow a=2b=c$

+ Nếu $a=c, 2b=c$: hoàn toàn tương tự suy ra $a=2b=c$

TH2: $1-\frac{1}{4a^2b^2c^2}=0\Rightarrow 4a^2b^2c^2=1$

Vậy ta có đpcm.

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn Thị Đoan Trang
Xem chi tiết
Chitanda Eru (Khối kiến...
Xem chi tiết
Ngọc Ánh
Xem chi tiết
Học đi
Xem chi tiết
Cuộc Sống
Xem chi tiết
Tuan Dang
Xem chi tiết
Quang Minh
Xem chi tiết
Quang Minh
Xem chi tiết
Kaito Kid
Xem chi tiết