cho a,b,c là các số hữu tỉ khác 0 thỏa mãn:
\(\dfrac{a+b-2c}{c}=\dfrac{c+a-2b}{b}=\dfrac{b+c-2a}{a}\)
Tính giá trị của biểu thức
A=\(\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
a) Cho a,b,c,d >0 và dãy tỉ số :\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}\)
Tính :P=\(\dfrac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\)
b)Tìm giá trị nguyên dương của x và y sao cho:\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{5}\)
hộ tui vs các chế
Cho 3 số a,b,c thỏa mãn : \(\dfrac{a-b+c}{2b}=\dfrac{c-a+b}{2a}=\dfrac{a-c+b}{2c}\). Tính giá trị \(P=\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\)
1) Cho \(\dfrac{a}{b}=\dfrac{c}{d}\) . Chứng minh rằng \(\dfrac{2a^2-3ab+5b^2}{2a^2+3ab}=\dfrac{2c^2-3cd+5d^2}{2c^2+3cd}\)
2) Cho \(\dfrac{a}{c}=\dfrac{c}{b}\). Chứng minh rằng \(\dfrac{b^2-c^2}{a^2+c^2}=\dfrac{b-a}{a}\)
3) Cho \(\dfrac{a}{b}=\dfrac{c}{d}\).Chứng minh rằng\(\dfrac{3a^6+c^6}{3b^6+d^6}=\dfrac{\left(a+c\right)^6}{\left(b+d\right)^6}\)
cho a,b,c > 0 và dảy tỉ số: \(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}\)
tính: P = \(\dfrac{(3a-2b)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\)
Cho a , b, c > 0 và dãy tỉ số \(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}\)
Tính P= \(\dfrac{\left(3a-2b\right).\left(3b-2c\right).\left(3c-2a\right)}{\left(3a-c\right).\left(3b-a\right).\left(3c-b\right)}\)
Cho a,b,c > 0 và dãy tỉ số : \(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}\)
Tính M =\(\dfrac{\left(3a-2b\right).\left(3b-2c\right).\left(3c-2a\right)}{\left(3a-c\right).\left(3b-a\right).\left(3c-b\right)}\)
cho các số a,b,c khác thỏa mãn: \(\dfrac{a-b+c}{2b}=\dfrac{c-a+b}{2a}=\dfrac{a-c+b}{2c}\)
Tính giá trị của biểu thức P = \(\left(1+\dfrac{c}{b}\right).\left(1+\dfrac{b}{a}\right).\left(1+\dfrac{a}{c}\right)\)
Bài 1: Cho a,b,c khác 0 và a+b+c = \(\dfrac{a+2b-c}{c}=\dfrac{b+2c-a}{a}=\dfrac{c+2a-b}{b}\)
Tính P= \(\left(2+\dfrac{a}{b}\right)\left(2+\dfrac{b}{c}\right)\left(2+\dfrac{c}{a}\right)\)