a) Cho a,b,c,d >0 và dãy tỉ số :\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}\)
Tính :P=\(\dfrac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\)
b)Tìm giá trị nguyên dương của x và y sao cho:\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{5}\)
hộ tui vs các chế
Cho a , b, c > 0 và dãy tỉ số \(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}\)
Tính P= \(\dfrac{\left(3a-2b\right).\left(3b-2c\right).\left(3c-2a\right)}{\left(3a-c\right).\left(3b-a\right).\left(3c-b\right)}\)
Cho a,b,c > 0 và dãy tỉ số : \(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}\)
Tính M =\(\dfrac{\left(3a-2b\right).\left(3b-2c\right).\left(3c-2a\right)}{\left(3a-c\right).\left(3b-a\right).\left(3c-b\right)}\)
Cho \(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}\)
Tính P = \(\dfrac{\left(3a+2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\)
Bài 1: Cho a,b,c khác 0 và a+b+c = \(\dfrac{a+2b-c}{c}=\dfrac{b+2c-a}{a}=\dfrac{c+2a-b}{b}\)
Tính P= \(\left(2+\dfrac{a}{b}\right)\left(2+\dfrac{b}{c}\right)\left(2+\dfrac{c}{a}\right)\)
Cho 3 số a,b,c thỏa mãn : \(\dfrac{a-b+c}{2b}=\dfrac{c-a+b}{2a}=\dfrac{a-c+b}{2c}\). Tính giá trị \(P=\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\)
cho a,b,c là các số hữu tỉ khác 0 thỏa mãn:
\(\dfrac{a+b-2c}{c}=\dfrac{c+a-2b}{b}=\dfrac{b+c-2a}{a}\)
Tính giá trị của biểu thức
A=\(\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
a) Cho \(\dfrac{a}{b}=\dfrac{c}{d}\) (\(a,b,c,d\ne0\)). Chứng minh rằng:
1) \(\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)
2) \(\dfrac{ab}{cd}=\dfrac{a^2+b^2}{c^2+d^2}\)
3) \(\dfrac{a^3+b^3}{c^3+d^3}=\dfrac{\left(a+b\right)^3}{\left(c+d\right)^3}\) \(\left(\dfrac{a}{b}=\dfrac{c}{d}\ne1\right)\)
b)Cho \(\dfrac{2a+13b}{3a-7b}=\dfrac{2c+13d}{3c-7d}\). Chứng minh rằng:\(\dfrac{a}{b}=\dfrac{c}{d}\)
c)Cho \(\dfrac{cy-bz}{x}=\dfrac{az-cx}{y}=\dfrac{bx-ay}{z}\). Chứng minh rằng: \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)
cho các số a,b,c khác thỏa mãn: \(\dfrac{a-b+c}{2b}=\dfrac{c-a+b}{2a}=\dfrac{a-c+b}{2c}\)
Tính giá trị của biểu thức P = \(\left(1+\dfrac{c}{b}\right).\left(1+\dfrac{b}{a}\right).\left(1+\dfrac{a}{c}\right)\)