Cho a,b,c là các số khác 0 và a+b+c\(\ne\)0 thoả mãn:
\(\frac{3a+b+c}{a}=\frac{a+3b+c}{b}=\frac{3c+b+a}{c}\)
Tính giá trị của biểu thức: \(B=\left(1+\frac{a}{b}\right).\left(1+\frac{b}{c}\right).\left(1+\frac{c}{a}\right)\)
Cho a,b,c là các số khác 0 và a+b+c\(\ne\)0 thoả mãn:
\(\frac{3a+b+c}{a}=\frac{a+3b+c}{b}=\frac{3c+b+a}{c}\)
Tính giá trị của biểu thức: \(B=\left(1+\frac{a}{b}\right).\left(1+\frac{b}{c}\right).\left(1+\frac{c}{a}\right)\)
Cho a,b,c là các số khác 0 và a+b+c\(\ne\)0 thoả mãn:
\(\frac{3a+b+c}{a}=\frac{a+3b+c}{b}=\frac{3c+b+a}{c}\)
Tính giá trị của biểu thức: \(B=\left(1+\frac{a}{b}\right).\left(1+\frac{b}{c}\right).\left(1+\frac{c}{a}\right)\)
cho a,b,c là 3 số thực khác 0 thoả mãn điều kiện \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
Tính giá trị biểu thức P =\(\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)\)
Cho a, b, c khác 0 thỏa mãn a+b+c=0. Tính \(A=\left(1+\frac{a}{b}\right).\left(1+\frac{b}{c}\right).\left(1+\frac{c}{a}\right)\)
Cho a,b,c là 3 số dương thỏa mãn điều kiện: \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\). Tính giá trị của biểu thức B= \(\left(1+\frac{b}{a}\right).\left(1+\frac{a}{c}\right).\left(1+\frac{c}{b}\right)\)
Bài 17: Cho a, b, c là 3 số thực khác 0, thỏa mãn điều kiện : \(a+b\ne-c\) và \(\dfrac{a+b-c}{c}\)=\(\dfrac{b+c-a}{a}\)=\(\dfrac{c+a-b}{b}\). Tính giá trị biểu thức P=\(\left(1+\dfrac{b}{a}\right)\)x\(\left(1+\dfrac{a}{c}\right)\)x\(\left(1+\dfrac{c}{b}\right)\)
Cho 3 số a,b,c khác 0 sao cho \(\frac{a}{2009}=\frac{b}{2010}=\frac{c}{2011}\)
Tính giá trị biểu thức \(M=4\left(a-b\right)\left(b-c\right)-\left(c-a\right)^2\)
Bài 1 :
a ) Tính \(A=\left(1-\frac{1}{1+2}\right).\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+3+...+2006}\right)\)
b ) Tìm x biết :
\(\left|\left(3x-3\right)+2x+\left(-1\right)^{2016}\right|=3x+2017^0\)
Bài : 2
a ) Cho a,b,c là các số thực khác 0 . Tìm các số thực x,y,z khác 0 thỏa mãn
\(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{zx}{cx+az}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)
Bài 3 . Tìm GTNN của biểu thức :
\(A=\left|x-2008\right|+\left|x-2009\right|+\left|y-2010\right|+\left|x-2011\right|+2011\)
Các bạn giúp mình nhé : Bạn Vũ Minh Tuấn , Nguyễn Việt Lâm , Nguyễn Văn Đạt , Băng Băng 2k6 và thầy Akai Haruma , Phynit và tất cả các bạn khác vào giúp mình với ạ !!!