Đề bài sai
Phản ví dụ: với \(a=b=c=-2\) thì \(a^2+b^2+c^2+abc+4< 2\left(ab+bc+ca\right)\)
Đề bài sai
Phản ví dụ: với \(a=b=c=-2\) thì \(a^2+b^2+c^2+abc+4< 2\left(ab+bc+ca\right)\)
1. cho a,b,c>0. Cmr: a) \(S=\frac{3\left(a^4+b^4+c^4\right)}{\left(a^2+b^2+c^2\right)}+\frac{ab+bc+ca}{a^2+b^2+c^2}\ge2\)
b) \(\frac{a^3+b^3+c^3}{abc}+\frac{9\left(ab+bc+ca\right)}{a^2+b^2+c^2}\ge12\)
cho a,b,c dương thỏa mãn abc=1.CMR:
\(a^2+b^2+c^2+a+b+c\ge2\left(ab+bc+ca\right)\)
1. cho \(0< a\le b\le c\) . Cmr: \(\frac{2a^2}{b^2+c^2}+\frac{2b^2}{c^2+a^2}+\frac{2c^2}{a^2+b^2}\le\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)
2. cho \(a,b,c\ge0\). cmr: \(a^2+b^2+c^2+3\sqrt[3]{\left(abc\right)^2}\ge2\left(ab+bc+ca\right)\)
3. \(a,b,c>0.\) Cmr: \(\sqrt{\left(a^2b+b^2c+c^2a\right)\left(ab^2+bc^2+ca^2\right)}\ge abc+\sqrt[3]{\left(a^3+abc\right)\left(b^3+abc\right)\left(c^3+abc\right)}\)
4. \(a,b,c>0\). Tìm Min \(P=\left(\frac{a}{a+b}\right)^4+\left(\frac{b}{b+c}\right)^4+\left(\frac{c}{c+a}\right)^4\)
cho a,b,c là các số thực không âm.Cmr
\(a^2+b^2+c^2+3\sqrt[3]{\left(abc\right)^2}\ge2\left(ab+bc+ca\right)\)
Cho a,b,c là các số thực dương. CMR \(a^2+b^2+c^2+abc+4\ge2\left(ab+bc+ac\right)\)
cho a,b,c là các số thực không âm. CMR:
\(ab\left(b^2+bc+ca\right)+bc\left(c^2+ca+ab\right)+ca\left(a^2+ab+bc\right)\le\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)\)
Cho a,b,c là các số thực không âm, cmr:
\(\sqrt{a^2+2b^2+ab}+\sqrt{b^2+2c^2+bc}+\sqrt{c^2+2a^2+ca}\ge2\left(a+b+c\right)\)
Cho ba số thực dương a, b, c thỏa mãn abc=1. Tìm GTNN của biểu thức P=\(\frac{\left(1+a\right)^2+b^2+5}{ab+a+4}+\frac{\left(1+b\right)^2+c^2+5}{bc+b+4}+\frac{\left(1+c\right)^2+a^2+5}{ca+c+4}\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c=3. Tìm giá trị nhỏ nhất của biểu thức:
\(P=\dfrac{1}{a\left(b^2+bc+c^2\right)}+\dfrac{1}{b\left(c^2+ca+a^2\right)}+\dfrac{1}{c\left(a^2+ab+b^2\right)}+\dfrac{abc}{ab+bc+ca}\)