Cho \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)
Tính \(M=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
Giải:
TH1: a + b + c = 0
\(\Rightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\a+c=-b\end{matrix}\right.\)
\(\Rightarrow M=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
\(=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}\)
\(=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=-1\)
TH2: a + b + c ≠ 0
áp dụng tính chất của dãy TSBN ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}b+c=2a\\c+a=2b\\a+b=2c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a+b+c=3a\\a+b+c=3b\\a+b+c=3c\end{matrix}\right.\)
\(\Rightarrow3a=3b=3c\)
\(\Rightarrow a=b=c\)
\(\Rightarrow M=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
\(=\left(1+1\right)\left(1+1\right)\left(1+1\right)\)
\(=2.2.2=8\)