Ôn tập chương I : Tứ giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
trang

Cho ABC. AD, BE, CF là 3 đường trung tuyến. Đường thẳng qua E song song với AB và đường thẳng qua F song song với  BE cắt nhau tại G. Chứng minh:

     a)   Tứ giác AFEG là hình bình hành

     b)  3 điểm D; E; G thẳng hàng

     c)   CG = AD

 

Nguyễn Hoàng Minh
9 tháng 10 2021 lúc 14:40

\(a,\left\{{}\begin{matrix}BF//GE\left(gt\right)\\FG//BE\left(gt\right)\end{matrix}\right.\Rightarrow BFGE\) là hbh \(\Rightarrow BF=GE\)

Mà \(BF=AF\left(F.là.trung.điểm.AB\right)\Rightarrow AF=GE\)

Mà \(AF//GE(BF//GE)\)

Do đó \(AFEG\) là hbh

\(b,\left\{{}\begin{matrix}BD=DC\\AE=EC\end{matrix}\right.\Rightarrow ED\) là đtb tg ABC \(\Rightarrow ED//AB\)

Mà \(EG//AB\left(gt\right)\)

Theo tiên đề Ơ-clít ta được EG trùng ED hay E,G,D thẳng hàng

\(c,\) ED là đtb tg ABC nên \(ED=\dfrac{1}{2}AB=AF=BF=GE\left(cm.trên\right)\)

Do đó E là trung điểm GD 

Mà E là trung điểm AC nên ADCG là hbh

Do đó \(CG=AD\)