Cho tam giác ABC vuông tại B, AB<BC. tia phân giác góc A cắt BC tại E . trên AC lấy D sao cho AD=AB. tia DE cắt tia AB tại F , G là trung điểm FC. chứng minh
a) tam giác ABE = tam giác ADE
b) AE là trung trực BD
c) DE < EF
d) AG vuông góc CF
cho tam giác ABC có AB<AC ,AD là phân giác góc BAC ,trên AC lấy E sao cho AB =AE.
a chứng minh tam giác ABD =AED
b qua e kẻ đường song song với BC cắt AD tại F.chứng minh tam giác DEF cân
c so sánh DE với CF{ mk cần gấp}
Cho \(\Delta ABC\)vuông tại A ( AB >AC ), phân giác BD. Qua D kẻ đường thẳng vuông góc với BC tại E.
a, Cho biết AB=9 cm; AC=12 cm. Tính BC .
b,Chứng minh \(\Delta ADE\) cân
c, Chứng minh AD<DC
d, Vẽ CF vuông góc với BD tại F. Chứng minh các đường thẳng AB, DE, CF đồng quy.
Cho tam giác ABC vuông tại A (AB < AC).Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Trên tia đối của tia AB lấy điểm E sao cho AE = AC.
a) Chứng minh : BC = DE.
b) Chứng minh : tam giác ABD vuông cân và BD // CE.
c) Kẻ đường cao AH của tam giác ABC tia AH cắt cạnh DE tại M. từ A kẻ đường vuông góc CM tại K, đường thẳng này cắt BC tại N . Chứng minh : NM // AB.
d) Chứng minh : AM = DE/2.
Cho \(\Delta ABC\) có 3 góc nhọn và \(AB< AC\) . Tia phân giác của \(\widehat{BAC}\) cắt BC ở D . Tia \(BE\perp AD\) , tia BE cắt AC tại F .
a) Chứng minh AB = AF
b) Qua F , vẽ đường thẳng song song với BC cắt AD tại H . Lấy \(K\in DC\) sao cho FH = DK . Chứng minh : DH = KF và DH // KF
c) So sánh \(\widehat{ABC}\) và \(\widehat{ACB}\)
tam giác abc vuông tại a (ab<ac). tia đối ac lấy điểm d sao cho ad=ab, tia đối ab lấy điểm e sao cho ae=ac. đường cao ah của tam giác abc tia ah cắt cạnh de tại m a kẻ đường thẳng vuông góc tại k đường thẳng cắt bc tại n
chứng minh
a,bc=de
b,
Cho tam giác ABC, D là trung điểm của AB. Đường thẳng qua D và song song với BC cắt AC tại E, đường thẳng qua E và song song với AB cắt BC ở F. Chứng minh rằng :
a) AD = EF
b) Tam giác ADE = Tam giác EFC
c) AE = EC
Cho ΔABC vuông tại A có AB =9cm, BC =15 cm, vẽ AD ⊥ BC (D ⊥ BC).
a) Tính AC, so sánh BD và DC.
b) Trên đoạn thẳng DC lấy điểm N sao cho DB = DN. Chứng minh ΔABN lầ tam giác cân.
c) Kẻ BE ⊥ AN cắt AD tại H. Chứng minh NH ⊥ AB.
cho tam giác ABC vuông tại C . Trên cạnh AB lấy điểm D sao cho AD =AC. Qua D kẻ đường thẳng vuông góc với AB cắt BC tại E
a) chứng minh tam giác ABC = tam giác ADE
b)so sánh CD và BC
c) Chứng minh AE\(^2\)+DB\(^2\)=AC\(^2\)+EB\(^2\)