ta có \(S=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{b+a}\)
=>\(S+3=3+\left(\dfrac{a}{b+c}+\dfrac{c}{b+a}+\dfrac{b}{c+a}\right)\)
hay \(S+3=\left(\dfrac{a}{b+c}+1\right)+\left(\dfrac{b}{c+a}+1\right)+\left(\dfrac{c}{b+a}+1\right)\)
=>\(S+3=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{a+c}+\dfrac{a+b+c}{b+a}\)
=>\(S+3=a+b+c\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\)
=>\(S+3=2007\cdot\dfrac{1}{90}\)
=>\(S+3=\dfrac{2017}{90}\)
=>S=\(\dfrac{1747}{90}\)