\(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)
=\(\dfrac{a}{ab+a+1}+\dfrac{ab}{abc+ab+a}+\dfrac{c}{ac+c+abc}\)
=\(\dfrac{a}{ab+a+1}+\dfrac{ab}{abc+ab+a}+\dfrac{c}{c\left(a+1+ab\right)}\)
=\(\dfrac{a}{ab+a+1}+\dfrac{ab}{abc+ab+a}+\dfrac{1}{a+1+ab}\)
=\(\dfrac{a+1}{ab+a+1}+\dfrac{ab}{abc+ab+a}\)
=\(\dfrac{a+abc}{ab+a+abc}+\dfrac{ab}{abc+ab+a}\)
=\(\dfrac{a+abc+ab}{ab+a+abc}=1\) (đpcm)