Chứng minh :
a) a\(a^4 + b^4 +c^2 ≥ 2a(ab^2 -a+c+1)+a^2(1+b^2)+b^2(1+c^2)+c^2(a+a^2) ≥6abc\)
b) \(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\text{≥}\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Cho a,b,c là các số thực dương thay đổi và thỏa mãn \(a+b+c=\dfrac{3\sqrt{3}}{\sqrt{2}}\)
Tìm giá trị lớn nhất của biểu thức \(M=\dfrac{1}{a^2+b^2+3}+\dfrac{1}{b^2+c^2+3}+\dfrac{1}{c^2+a^2+3}\)
Cho a,b,c là 3 số thực thuộc 0<a,b,c<1 và thỏa mãn điều kiện \(\dfrac{1}{1-ab}+\dfrac{1}{1-bc}+\dfrac{1}{1-ca}=4\)
Tìm GTNN biểu thức
P=\(\dfrac{a^2}{1-a^2}+\dfrac{b^2}{1-b^2}+\dfrac{c^2}{1-c^2}\)
giúp tớ nha tớ cần gấp
Cho đẳng thức : a(b-c)x2 +b(c-a)xy +c(a-b)y2 đúng với mọi x,y và cho a,b,c khác
Chứng minh :\(\dfrac{2}{b}\) =\(\dfrac{1}{a}\) +\(\dfrac{1}{c}\)
Chứng minh rằng các bất phương trình sau đây vô nghiệm :
a) \(x^2+\dfrac{1}{x^2+1}< 1\)
b) \(\sqrt{x^2-x+1}+\dfrac{1}{\sqrt{x^2-x+1}}< 2\)
c) \(\sqrt{x^2+1}+\sqrt{x^4-x^2+1}< 2\sqrt[4]{x^6+1}\)
1) y = \(\sqrt{6-x}+\sqrt{x-2}\)
2) a) cho \(\left\{{}\begin{matrix}a,b,c>0\\a+2b+3c=14\end{matrix}\right.\)
tìm Pmin với P = a2+b2+c2
b) cho \(\left\{{}\begin{matrix}a,b,c>0\\a^2+4ab+9c^2=2015\end{matrix}\right.\)
tìm Pmax với P = a+b+c
Chứng minh các bất phương trình sau vô nghiệm :
a. \(x^2+\sqrt{x+8}\le-3\)
b. \(\sqrt{1+2\left(x-3\right)^2}+\sqrt{5-4x+x^2}< \dfrac{3}{2}\)
c. \(\sqrt{1+x^2}-\sqrt{7+x^2}>1\)
Tìm các giá trị x thỏa mãn điều kiện của mỗi bất phương trình sau :
a. \(\dfrac{1}{x}< 1-\dfrac{1}{x+1}\)
b. \(\dfrac{1}{x^2-4}\le\dfrac{2x}{x^2-4x+3}\)
c. \(2\left|x\right|-1+\sqrt[3]{x-1}< \dfrac{2x}{x+1}\)
d. \(2\sqrt{1-x}>3x+\dfrac{1}{x+4}\)
Viết điều kiện của mỗi bất phương trình sau :
a) \(2x-3-\dfrac{1}{x-5}< x^2-x\)
b) \(x^3\le1\)
c) \(\sqrt{x^2-x-2}< \dfrac{1}{2}\)
d) \(\sqrt[3]{x^4+x-1}+x^2-1\ge0\)