Áp dụng BĐT Svácxơ, ta có:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}\ge\dfrac{9}{a+2b}\)\(\Rightarrow\) \(\dfrac{1}{9}\left(\dfrac{1}{a}+\dfrac{2}{b}\right)\ge\dfrac{1}{a+2b}\)
Tương tụ:
\(\dfrac{1}{9}\left(\dfrac{1}{b}+\dfrac{2}{c}\right)\ge\dfrac{1}{b+2c}\)
\(\dfrac{1}{9}\left(\dfrac{1}{c}+\dfrac{2}{a}\right)\ge\dfrac{1}{c+2a}\)
\(\Rightarrow\) \(\dfrac{1}{9}\left(\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{3}{c}\right)\ge\left(\dfrac{1}{a+2b}+\dfrac{1}{b+2c}+\dfrac{1}{c+2a}\right)\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\left(\dfrac{1}{a+2b}+\dfrac{1}{b+2c}+\dfrac{1}{c+2a}\right)\)
Dấu "=" xảy ra <=> \(a=b=c\)