Cho a,b,c>0 CMR
\( \frac{a^3}{a+2b}+ \frac{b^3}{b+2c}+ \frac{c^3}{c+2a} \ge \frac{a^2+b^2+c^2}{3} \)
Cho a2+b2\(\ne \)0CMR
\(\frac{2ab}{a^2+4b^2}+\frac{b^2}{3a^2+2b^2}\le\frac{3}{5} \)
1, cho a,b,c là các số thực dương chứng minh rằng \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{2a+b}{a\left(a+2b\right)}+\frac{2b+c}{b\left(b+2c\right)}+\frac{2c+a}{c\left(a+2c\right)}\)
2,cho x,y,z thỏa mãn x+y+z=5 và xy+yz+xz=8 chứng minh rằng \(1\le x\le\frac{7}{3}\)
3, cho a,b,c>0 chứng minh rằng\(\frac{a^2}{2a^2+\left(b+c-a\right)^2}+\frac{b^2}{2b^2+\left(b+c-a\right)^2}+\frac{c^2}{2c^2+\left(b+a-c\right)^2}\le1\)
4,cho a,b,c là các số thực bất kỳ chứng minh rằng \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\left(ab+bc+ac-1\right)^2\)
5, cho a,b,c > 1 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)chứng minh rằng \(\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}\le\sqrt{a+b+c}\)
1, cho a,b,c là các số dương chứng minh rằng\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{2a+b}{a\left(a+2b\right)}+\frac{2b+c}{b\left(b+2c\right)}+\frac{2c+a}{c\left(2a+c\right)}\)
2, cho x,y,z thuộc R và x+y+z=5 và xy +yz+xz=8 chứng minh răng \(1\le x\le\frac{7}{3}\)
Cho a,b,c>0 CMR
\( \frac{a^3}{bc}+ \frac{b^3}{ac}+ \frac{c^3}{ab}\ge \frac{3(a^2+b^2+c^2)}{a+b+c} \)
Cho B = 1+ (\(\frac{2a+\sqrt{a}-1}{1-a}\) - \(\frac{2a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}\)). \(\frac{a-\sqrt{a}}{2\sqrt{a}-1}\)
C/m B > \(\frac{2}{3}\)
Các bạn ơi, giải giúp mình với !!! Mình cảm ơn nhiều lắm.
a^2 - ab + b^2=b^2 - 2ab + a^2 (1)
(a-b)^2 = (b-a)^2 (2)
a-b = b-a (3)
a + b = a - b (4)
2a = 2b (5)
a = b (6)
Tìm chổ sai
Cho a,b,c>0 và a+b+c=3CMR
\(\frac{a}{b^3+ab}+\frac{b}{c^3+bc}+\frac{c}{a^3+ac}\ge\frac{3}{2}\)
rút gọn: a, \(\left(a+b-\frac{2a\sqrt{b}+2b\sqrt{a}}{\sqrt{a}-\sqrt{b}}\right):\left(a-b\right)+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\) (a, b ≥ 0; a ≠ b)
b, \(\left|x\right|+\frac{\sqrt{x^2}}{x}\) ( x ≠ 0)