Ta có \(a^2+b^2\ne0\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}a\ne0\\b\ne0\end{matrix}\right.\)
\(\dfrac{2ab}{a^2+4b^2}+\dfrac{b^2}{3a^2+2b^2}\le\dfrac{3}{5}\)
<=> \(\dfrac{2t}{t^2+4}+\dfrac{1}{3t^2+2}\le\dfrac{3}{5}\), trong đó \(t=\dfrac{a}{b}\),
<=> 9t⁴ - 30t³ + 37t² - 20t + 4 ≥ 0
<=> (t - 1)²(3t - 2)² ≥ 0 (luôn đúng)
Vậy \(\dfrac{2ab}{a^2+4b^2}+\dfrac{b^2}{3a^2+2b^2}\le\dfrac{3}{5}\)