\(a^3+b^3=a^5+b^5\)
\(\Rightarrow\left(a^2.a^1\right)+\left(b^2.b^1\right)=\left(a^2.a^3\right)+\left(b^2.b^3\right)\)
\(\Rightarrow\dfrac{a^2}{a^2}=\dfrac{a^3+\left(b^2+b^3\right)}{a^1+b^2.b^1}\)
\(\Rightarrow1=a^2+b^2\)
\(\Rightarrow1\ge\left(a^2+b^2\right)-ab\)
\(\Rightarrow1+ab\le a^2+b^2\)