a3+b3=(a+b)(a2-ab+b2)=a+b
=> a2-ab+b2=1
=> a2+ab+b2=1+ab>1 ( vi a,b duong)
Bai nay phai c/m > 1 nha , neu k tin ban thay a=b=1 vao
a3+b3=(a+b)(a2-ab+b2)=a+b
=> a2-ab+b2=1
=> a2+ab+b2=1+ab>1 ( vi a,b duong)
Bai nay phai c/m > 1 nha , neu k tin ban thay a=b=1 vao
Tìm các số a và b biết rằng a3+b3 = 152,a2 + b2 - ab = 19,a - b = 2
Tui đang cần gấp giải giúp tui với
Cho a,b là các số thực thỏa mãn a2+b2-ab=4.CMR \(\dfrac{8}{3}\le a^2+b^2\le8\)
Cho a b c là 3 số thực dương thỏa a+b+c=1 CM a2/a+b+b2/b+c+c2/c+a>=1/2
Cho a, b, c thuộc số thực dương, thỏa mãn a2+b2+c2=3
CMR : (a2b+b2c+c2a)(a+b+c)≥9abc
(c2 là c^2 nha...)
cho a,b,c ≥ 0 thỏa mãn a2 + b2 + c2 ≤ 8. Tìm GTLN của
\(M=4\left(a^3+b^3+c^3\right)-\left(a^4+b^4+c^4\right)\)
cho a, b, c là các số nguyên dương thỏa mãn \(ab+bc+ca+2\left(a+b+c\right)=8045\) và \(abc-a-b-c=-2\). tìm a+b+c
Cho a;b;c là các số thực dương thỏa mãn: a+b+c=3.
Tìm Min của: \(A=\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{6abc}{ab+bc+ac}\)
Cho a;b;c là các số thực dương thỏa mãn: a+b+c=3.
Tìm Max của: \(A=\dfrac{1}{a+3}+\dfrac{1}{b+3}+\dfrac{1}{c+3}-\dfrac{1}{3\left(ab+bc+ac\right)}\)
Nhờ các bạn Giúp mk với ạ Mk xin cảm ơn
1.Cho \(a,b,c,d\) là các số nguyên thỏa mãn \(a^3+b^3=2\left(c^3-d^3\right)\) . Chứng minh rằng a+b+c+d chia hết cho 3
2.Cho ba số dương a,b,c thỏa mãn abc=1. Chứng minh rằng \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\ge\dfrac{3}{2}\)