Cho a/b=c/d a/b,c/d khác cộng trừ 1( a,b,c,d khác 0) CMR ab/cd a^2+b^2/c^2+d^2 (Giải bàng nhiều cách)
cho \(\dfrac{a}{b}=\dfrac{c}{d}\)CMR
\(\left(\dfrac{a-b}{c-d}\right)^2=\dfrac{ab}{cd}\)
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\). CMR : \(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\) và \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\). CMR: \(\dfrac{a^2-b^2}{ab}=\dfrac{c^2-d^2}{cd}\)
cho \(\dfrac{a}{b}=\dfrac{c}{d}\) khác \(\pm\)1 và c khác 0 , CMR
a) \(\left(\dfrac{a-b}{c-d}\right)^2=\dfrac{ab}{cd}\)
b)\(\dfrac{5a+3b}{5c+3d}\) =\(\dfrac{5a+3b}{5c+3d}\)
\(Cho\) \(\dfrac{a}{b}=\dfrac{c}{d}\). \(CMR:\) \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Bài 1. Cho \(\dfrac{a}{b}=\dfrac{c}{d}\)
Chứng minh a/3a+b= c/3c+d
Bài 2. Cho a/b= c/d. Chứng minh: a. a^2 - b^2/c^2-d^2 = ab/cd
b. (a-b)^2/(c-d)^2 = ab/cd
Bài 3. Tìm x,y biết 2/x=3/y và xy= 96
cho a/b=c/d chứng minh ab/cd=(a-b)^2/(c-d)^2
CMR:\(\dfrac{a+b}{b+c}=\dfrac{c+d}{d+a}\)thì a=c hoặc a+b+c+d =0