\(2\left(a^2+b^2\right)-6\left(\frac{a}{b}+\frac{b}{a}\right)+9\left(\frac{1}{a^2}+\frac{1}{b^2}\right)\\ =\left(\frac{3}{a^2}+3b^2\right)+\left(\frac{3}{b^2}+3a^2\right)-\left(a^2+2ab+b^2\right)-6\left(\frac{a}{b}+\frac{b}{a}\right)+6\left(ab+ab+\frac{1}{a^2}+\frac{1}{b^2}\right)-10ab\)
Áp dụng bất đẳng thức Cô-si với 2 số không âm:
\(\Rightarrow2\left(a^2+b^2\right)-6\left(\frac{a}{b}+\frac{b}{a}\right)+9\left(\frac{1}{a^2}+\frac{1}{b^2}\right)\\ \ge2\sqrt{\frac{3}{a^2}\cdot3b^2}+2\sqrt{\frac{3}{b^2}\cdot3a^2}-\left(a+b\right)^2-6\left(\frac{a}{b}+\frac{b}{a}\right)+6\cdot4\sqrt{ab\cdot ab\cdot\frac{1}{a^2}\cdot\frac{1}{b^2}}-\frac{10\left(a+b\right)^2}{4}\\ =\frac{6b}{a}+\frac{6a}{b}-4-6\left(\frac{a}{b}+\frac{b}{a}\right)+24-10\\ =10\)
Dấu "=" xảy ra khi \(a=b=1\)