a) \(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\)
\(\Leftrightarrow a^2-ab+b^2\ge ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow a=b\)
b) Áp dụng câu a) ta được :
\(a^3+b^3+1=a^3+b^3+abc\ge ab\left(a+b\right)+abc=ab\left(a+b+c\right)\)
\(\Rightarrow\frac{1}{a^3+b^3+1}\le\frac{1}{ab\left(a+b+c\right)}\)
Chứng minh tương tự ta có :
\(\frac{1}{b^3+c^3+1}\le\frac{1}{bc\left(a+b+c\right)};\frac{1}{c^3+a^3+1}\le\frac{1}{ca\left(a+b+c\right)}\)
Cộng theo vế của các bất đẳng thức :
\(VT\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}\)
\(=\frac{1}{\frac{a+b+c}{c}}+\frac{1}{\frac{a+b+c}{a}}+\frac{1}{\frac{a+b+c}{b}}\)
\(=\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)