Em bất tài xin phép để link :( Câu hỏi của Anh Khương Vũ Phương - Toán lớp 9 | Học trực tuyến
Em bất tài xin phép để link :( Câu hỏi của Anh Khương Vũ Phương - Toán lớp 9 | Học trực tuyến
Cho \(\text{a,b,c,d }\ge1\) thỏa mãn abcd=4.Tìm giá trị nhỏ nhất :
\(P=\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}+\dfrac{1}{1+d}\)
b)tìm giá trị nguyên của x để A có giá trị nguyên
Cho a,b,c là các số dương thỏa mãn a+b+c=1
Tìm giá trị lớn nhất của biểu thức P= \(\dfrac{ab}{c+1}+\dfrac{bc}{a+1}+\dfrac{ac}{b+1}\)
cho a,b,c>o và a+b+c=1
tìm giá trị nhỏ nhất của biểu thức a.b.c +\(\dfrac{1}{a.b.c}\)
cho a,b,c\(\le\dfrac{3}{2}\)
Tìm giá trị nhỏ nhất của
\(A=\left(3+\dfrac{1}{a}+\dfrac{1}{b}\right)\left(3+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(3+\dfrac{1}{c}+\dfrac{1}{a}\right)\)
Cho biểu thức
A=\(\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{1}{x+\sqrt{x}}\right):\dfrac{x-\sqrt{x}+1}{x\sqrt{x}+1}\)
a,Rút gọn biểu thức
b,Tìm x để A<0
1.Cho 2 biểu thức:
A=\(\dfrac{x+3}{\sqrt{x-2}}\) và B=\(\dfrac{\sqrt{x-1}}{\sqrt{x-2}}\)+ \(\dfrac{5\sqrt{x-2}}{x-4}\) với x>0, x≠4
a.Rút gọn B b.Tìm x để M=\(\dfrac{A}{B}\) đạt giá trị nhỏ nhất
2.Cho 2 biểu thức:
A=\(\dfrac{\sqrt{x+2}}{\sqrt{x+3}}\)và B=\(\dfrac{5}{x+\sqrt{x}-6}\)+\(\dfrac{1}{\sqrt{x}-2}\)
a.Rút gọn C=A-B b.Tìm x để C=\(-3\sqrt{x}\)
1. Cho biểu thức : A = \(\left(1-\dfrac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\).
a) Rút gọn A.
b) Tìm x để A < 0.
2. Cho biểu thức: B = \(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{3+\sqrt{x}}\).
a) Rút gọn B.
b) Tìm x để B = \(\dfrac{1}{2}\)
c) Tìm x để B > 0.
3. a) Tìm GTLN của biểu thức: A = \(\dfrac{1}{x-\sqrt{x}+1}\).
b) Tìm GTNN của biểu thức: B = \(\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\).
Cho a > 0 tìm giá trị nhỏ nhất
a, \(P=a+\dfrac{2}{a}+3\)
b, \(P=a+\dfrac{1}{a+1}+3\)