Để dễ nhìn, đặt \(\left(a;b;c;d\right)=\left(x^4;y^4;z^4;t^4\right)\Rightarrow\left\{{}\begin{matrix}x;y;z;t\ge1\\xyzt=\sqrt{2}\end{matrix}\right.\)
Khi đó: \(P=\dfrac{1}{1+x^4}+\dfrac{1}{1+y^4}+\dfrac{1}{1+z^4}+\dfrac{1}{1+t^4}\)
Áp dụng BĐT cơ bản: \(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\ge\dfrac{2}{1+xy}\) với \(x;y\ge1\) ta được:
\(P\ge\dfrac{2}{1+\left(xy\right)^2}+\dfrac{2}{1+\left(zt\right)^2}\ge\dfrac{4}{1+xyzt}=\dfrac{4}{1+\sqrt[]{2}}\)
Dấu "=" xảy ra khi \(x=y=z=t\) hay \(a=b=c=d=...\)