a: \(A=\dfrac{2x+1}{\left(x-1\right)\left(x-2\right)}+\dfrac{x+1}{x-1}-\dfrac{x^2+5}{\left(x-1\right)\left(x-2\right)}+\dfrac{x^2+x}{x-1}\)
\(=\dfrac{2x+1-x^2-5}{\left(x-1\right)\left(x-2\right)}+\dfrac{x+1+x^2+x}{x-1}\)
\(=\dfrac{-x^2+2x-4+\left(x^2+2x+1\right)\left(x-2\right)}{\left(x-1\right)\left(x-2\right)}\)
\(=\dfrac{-x^2+2x-4+x^3-2x^2+2x^2-4x+x-2}{\left(x-1\right)\left(x-2\right)}\)
\(=\dfrac{x^3-x^2-x-6}{\left(x-1\right)\left(x-2\right)}\)
b: Để A là số nguyên thì \(x^3-3x^2+2x+2x^2-6x+4+3x-10⋮\left(x-1\right)\left(x-2\right)\)
=>\(3x-10⋮x^2-3x+2\)
Xin lỗi bạn, đến đây mình thua rồi