Cho các số thực dương a,b,c. Chứng minh rằng :
\(\frac{1}{3a+2b+4c}+\frac{1}{3b+2c+4a}+\frac{1}{3c+2a+4b}\)< \(\frac{1}{a+3b+5c}+\frac{1}{b+3c+5c}+\frac{1}{c+3a+5b}\)
Cho x,y,z tỉ lệ với a,b,c
Chứng minh (x2+2y2+3z2)(a2+2b2+3c2)=(ax+2by+3cz)2
Cho a,b,c>0 thỏa mãn: 6a+2b+3c=11.Tìm giá trị nhỏ nhất của biểu thức:
M=\(\frac{2b+3c+16}{1+6a}+\frac{6a+3c+16}{1+2b}+\frac{6a+2b+16}{1+3c}\)
Rút gọn: (a + 2b - 3c - d)(a + 2b + 3c + d)
Cho a,b,c thoả mãn: -1\(\le a;b;c\le4\) và a+2b+3c=4. Cmr: a2+2b2+3c2\(\le\) 36
cho a>b,chứng minh
a)2a+3>2b+1
b)-2a-6<-2b
cho a < b. chứng minh: -2a < -2b
Cho các số a,b,c,d thỏa mãn 3a+2b-c-d=1; 2a+2b-c+2d= 2; 4a-2b-3c+d=3; 8a+b-6c+d=4 . Tính a+b+c+d
cho 3 số thực dương a,b,c thỏa mãn a+2b+3c >=20.tìm giá trị nhỏ nhất của A = a+b+c+3/a+9/2b+4/c