Cho \(\dfrac{a}{b-c}+\dfrac{b}{c-a}+\dfrac{c}{a-b}=0\).
Chứng minh rằng: \(\dfrac{a}{\left(b-c\right)^2}+\dfrac{b}{\left(c-a\right)^2}+\dfrac{c}{\left(a-b\right)^2}=0\)
Cho \(x+y+z=0\)
Chứng minh rằng: \(a^5\left(b^2+c^2\right)+b^5\left(a^2+c^3\right)+c^5\left(a^2+b^2\right)=\dfrac{1}{2}\left(a^3+b^3+c^3\right)\left(a^4+b^4+c^4\right)\)
Cho: \(\dfrac{a}{b-c}+\dfrac{b}{c-a}+\dfrac{c}{a-b}=0\). Chứng minh: \(\dfrac{a}{\left(b-c\right)^2}+\dfrac{b}{\left(c-a\right)^2}+\dfrac{c}{\left(a-b\right)^2}=0\) trong đó a, b, c đôi 1 khác nhau và khác 0
Cho a khác -b;b khác -c;c khác -a.Chứng minh rằng :
\(\dfrac{b^2-c^2}{\left(a+b\right)\left(a+c\right)}\)+\(\dfrac{c^2-a^2}{\left(b+c\right)\left(b+a\right)}\)+\(\dfrac{a^2-b^2}{\left(c+a\right)\left(c+b\right)}\)=\(\dfrac{b-c}{b+c}\)+\(\dfrac{c-a}{c+a}\)+\(\dfrac{a-b}{a+b}\)
Cho a,b,c là các số thực dương thỏa mãn điều kiện abc=1
Chứng minh rằng : \(P=\dfrac{1}{\left(a+1\right)^2}+\dfrac{1}{\left(b+1\right)^2}+\dfrac{1}{\left(c+1\right)^2}+\dfrac{2}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge1\)
Chứng minh đẳng thức:
\(\dfrac{1}{\left(b-c\right)\left(a^2+ac-b^2-bc\right)}+\dfrac{1}{\left(c-a\right)\left(b^2+ba-c^2-ca\right)}+\dfrac{1}{\left(a-b\right)\left(c^2+cb-a^2-ab\right)}=0\)
Cho a,b,c thỏa mãn
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ne0\) và \(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}=\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\)
Chứng minh : a=b=c
Chứng minh các đẳng thức:
a, \(\dfrac{b-c}{\left(a-b\right)\left(a-c\right)}\) + \(\dfrac{c-a}{\left(b-c\right)\left(b-a\right)}\)+ \(\dfrac{a-b}{\left(c-a\right)\left(c-b\right)}\)=\(\dfrac{2}{a-b}\)+\(\dfrac{2}{b-c}+\dfrac{2}{c-a}\)
Cho a + b + c = 1 (a,b,c khác 1,2). Chứng minh
\(\dfrac{c+ab}{a^2+b^2+abc-1}+\dfrac{a+bc}{b^2+c^2+abc-1}+\dfrac{b+ac}{a^2+c^2+abc-1}=\dfrac{bc+ac+ab+8}{\left(a-2\right)\left(b-2\right)\left(a-2\right)}\)