Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lucy Heartfilia

Cho a,b,c thỏa mãn

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ne0\)\(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}=\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\)

Chứng minh : a=b=c

Nguyễn Việt Lâm
2 tháng 1 2019 lúc 20:19

\(\Leftrightarrow a^2\left(\dfrac{1}{a+b}-\dfrac{1}{b+c}\right)+b^2\left(\dfrac{1}{b+c}-\dfrac{1}{c+a}\right)+c^2\left(\dfrac{1}{c+a}-\dfrac{1}{a+b}\right)=0\)

\(\Leftrightarrow\dfrac{a^2\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\dfrac{b^2\left(a-b\right)}{\left(a+c\right)\left(b+c\right)}+\dfrac{c^2\left(b-c\right)}{\left(a+b\right)\left(a+c\right)}=0\)

\(\Leftrightarrow a^2\left(c-a\right)\left(c+a\right)+b^2\left(a-b\right)\left(a+b\right)+c^2\left(b-c\right)\left(b+c\right)=0\)

\(\Leftrightarrow a^2\left(c^2-a^2\right)+b^2\left(a^2-b^2\right)+c^2\left(b^2-c^2\right)=0\)

\(\Leftrightarrow a^2c^2+a^2b^2+b^2c^2-a^4-b^4-c^4=0\)

\(\Leftrightarrow2a^4+2b^4+2c^4-2a^2b^2-2a^2c^2-2b^2c^2=0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(a^2-c^2\right)^2+\left(b^2-c^2\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}a^2-b^2=0\\a^2-c^2=0\\b^2-c^2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)\left(a+b\right)=0\\\left(a-c\right)\left(a+c\right)=0\\\left(b-c\right)\left(b+c\right)=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a-b=0\\a-c=0\\b-c=0\end{matrix}\right.\) (do \(\left(a+b\right)\left(a+c\right)\left(b+c\right)\ne0\) \(\Rightarrow\left\{{}\begin{matrix}a+b\ne0\\a+c\ne0\\b+c\ne0\end{matrix}\right.\))

\(\Rightarrow a=b=c\)


Các câu hỏi tương tự
Big City Boy
Xem chi tiết
Kamato Heiji
Xem chi tiết
poppy Trang
Xem chi tiết
Gallavich
Xem chi tiết
blabla bista
Xem chi tiết
Big City Boy
Xem chi tiết
TTN Béo *8a1*
Xem chi tiết
dia fic
Xem chi tiết
 Mashiro Shiina
Xem chi tiết