\(a^2+b^2+c^2+3=2\left(a+b+c\right)\)
\(\Leftrightarrow a^2+b^2+c^2+3=2a+2b+2c\)
\(\Leftrightarrow a^2-2b+1+b^2-2b+1+c^2-2c+1=0\)
\(\Rightarrow a-1=b-1=c-1=0\)
\(\Rightarrow a=b=c=1\left(đcpcm\right)\)
bạn bỏ cái dòng thứ 2 cx đc nhá
\(a^2+b^2+c^2+3=2\left(a+b+c\right)\)
\(\Leftrightarrow a^2+b^2+c^2+3=2a+2b+2c\)
\(\Leftrightarrow a^2-2b+1+b^2-2b+1+c^2-2c+1=0\)
\(\Rightarrow a-1=b-1=c-1=0\)
\(\Rightarrow a=b=c=1\left(đcpcm\right)\)
bạn bỏ cái dòng thứ 2 cx đc nhá
Chứng minh đẳng thức:
a) Cho \(2\left(a^2+b^2\right)=\left(a-b\right)^2.\) Chứng minh rằng a; b là 2 số đối nhau.
b) Cho \(a^2+b^2+c^2+3=2\left(a+b+c.\right)\) Chứng minh rằng a = b = c = 1
c) Cho \(\left(a+b+c\right)^2=3\left(ab+ac+bc\right).\) Chứng minh rằng a = b = c
Cho \(x+y+z=0\)
Chứng minh rằng: \(a^5\left(b^2+c^2\right)+b^5\left(a^2+c^3\right)+c^5\left(a^2+b^2\right)=\dfrac{1}{2}\left(a^3+b^3+c^3\right)\left(a^4+b^4+c^4\right)\)
1.Cho \(a,b,c,d\) là các số nguyên thỏa mãn \(a^3+b^3=2\left(c^3-d^3\right)\) . Chứng minh rằng a+b+c+d chia hết cho 3
2.Cho ba số dương a,b,c thỏa mãn abc=1. Chứng minh rằng \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\ge\dfrac{3}{2}\)
Bài 1 : Cho 2 số thực a , b thỏa mãn a + b = 5 và ab = 6 . Hãy tính giá trị của các biểu thức sau : \(a^2+b^2\) ; \(a^3+b^3\); \(a^4+b^4\) ; \(a^5+b^5\) ; \(a^6+b^6\)
Bài 2 :
a) Chứng minh rằng : \(a^2-ab+b^2=\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\) với mọi số thực a , b
b) Cho hằng đẳng thức \(2a^2-5ab+2b^2=x\left(a+b\right)^2+y\left(a-b\right)^2\)
c) Chứng minh rằng \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
d) Chứng minh rằng \(\left(ax+by\right)^2+\left(ay-bx\right)^2=\left(a^2+b^2\right)\left(x^2+y^2\right)\) với mọi số thực a , b , x , y
cho \(a^2+b^2=\left(a+b+c\right)^2\) chứng minh rằng \(\dfrac{\left(a-c\right)^2+a^2}{\left(b-c\right)^2+b^2}=\dfrac{a-c}{b-c}\)
Cho 3 số thực dương a, b, c.
Chứng minh rằng: \(\frac{b}{a\left(a+b\right)}+\frac{c}{b\left(b+c\right)}+\frac{a}{c\left(c+a\right)}\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Chứng minh rằng: Nếu \(\left(a+b+c\right)^2=3.\left(a^2+b^2+c^2\right)\) thì a=b=c
Cho a,b,c là các số nguyên dương thỏa mãn:\(a+b+c=a^2+b^2+c^2=2\)
Chứng minh rằng"\(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\)
Bài 1: a) Cho x>0,y>0 và m,n là hai số thực .Chứng minh rằng \(\frac{m^2}{x}+\frac{n^2}{y}\) ≥ \(\frac{\left(m+n\right)^2}{x+y}\)
b)Cho a,b,c là 3 số dương thỏa mãn abc=1.Chứng minh rằng : \(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\) ≥\(\frac{3}{2}\)