Cho \(a^2+b^2=2\) và \(\left(a-d\right)\left(b-c\right)=1\). Chứng minh \(c^2+d^2-2ad-2bc-2ab\ge-2\)
chứng minh các đẳng thức sau
a)\(\left(a+b+c\right)^2+\left(b+c-a\right)^2\left(c+a-b\right)^2\left(a+b+c\right)^2=4\left(a^2+b^2+c^2\right)\)
b) \(\left(a+b+c+d\right)^2+\left(a+b-c-d\right)^2+\left(a+c-b-d\right)^2+\left(a+d-b-c\right)^2=4\left(a^2+b^2+c^2+d^2\right)\)
Cho 0 < a < b < c < d. Chứng minh: \(\left(b+c\right).\left(\dfrac{1}{b}+\dfrac{1}{c}\right)< \dfrac{\left(a+d\right)^2}{ad}\)
Cho \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=4.\left(a^2+b^2+c^2-ac-bc-ca\right)\). Chứng minh rằng : a = b = c
Cho 3 số a,b,c thỏa mãn:
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=6abc\)
Chứng minh: \(a^3+b^3+c^3=3abc\left(a+b+c+1\right)\)
a) Giải \(\left\{{}\begin{matrix}x\sqrt{y}+y\sqrt{x}=30\\x\sqrt{x}+y\sqrt{y}=35\end{matrix}\right.\)
b) Cho 0 < a < b < c < d. Chứng minh \(\left(b+c\right)\left(\dfrac{1}{b}+\dfrac{1}{c}\right)< \dfrac{\left(a+d\right)^2}{ad}\)
Câu 1: Phân tích thành nhân tử:
\(\text{a) }a\left(a+2b\right)^3-b\left(2a+b\right)^3\)
\(\text{b) }\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)\left(c+a\right)\left(c^2-a^2\right)\)
Câu 2: Cho \(a^3+b^3+c^3-3abc=0\)
Chứng minh: \(a=b=c\)
CMR:
a/\(a^2+b^2+c^2\ge\text{ab}+bc+c\text{a}\)
b/\(3\left(\text{a}b+bc+c\text{a}\right)\le\left(\text{a}+b+c\right)^2\le3\left(\text{a}^2+b^2+c^2\right)\)
c/\(\text{a}^3+b^3\ge\text{a}b\left(\text{a}+b\right)\)
a/ \(\left(x+y\right)^2-y^2=x\left(x+2y\right)\)
b/ \(\left(x^2+y^2\right)^2-\left(2xy\right)^2=\left(x+y\right)^2\left(x-y\right)^2\)
c/ \(\left(a+b+c\right)^2+\left(a+b-c\right)^2+\left(2a-b\right)^2\)
d/ \(\left(a+b+c\right)^2+\left(a+b-c\right)^2+2\left(a+b\right)\)