Lời giải:
Ta có:
\(A=2(a^6-b^6)-3(a^4+b^4)\)
\(=2[(a^2)^3-(b^2)^3]-3[a^4+b^4-2a^2b^2]-6a^2b^2\)
\(=2(a^2-b^2)(a^4+a^2b^2+b^4)-3(a^2-b^2)^2-6a^2b^2\)
\(=2(a^4+a^2b^2+b^4)-3-6a^2b^2\)
\(=2(a^4-2a^2b^2+b^4)-3=2(a^2-b^2)^2-3=2.1-3\)
\(=-1\)
Lời giải:
Ta có:
\(A=2(a^6-b^6)-3(a^4+b^4)\)
\(=2[(a^2)^3-(b^2)^3]-3[a^4+b^4-2a^2b^2]-6a^2b^2\)
\(=2(a^2-b^2)(a^4+a^2b^2+b^4)-3(a^2-b^2)^2-6a^2b^2\)
\(=2(a^4+a^2b^2+b^4)-3-6a^2b^2\)
\(=2(a^4-2a^2b^2+b^4)-3=2(a^2-b^2)^2-3=2.1-3\)
\(=-1\)
Bài 1 : Cho 2 số thực a , b thỏa mãn a + b = 5 và ab = 6 . Hãy tính giá trị của các biểu thức sau : \(a^2+b^2\) ; \(a^3+b^3\); \(a^4+b^4\) ; \(a^5+b^5\) ; \(a^6+b^6\)
Bài 2 :
a) Chứng minh rằng : \(a^2-ab+b^2=\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\) với mọi số thực a , b
b) Cho hằng đẳng thức \(2a^2-5ab+2b^2=x\left(a+b\right)^2+y\left(a-b\right)^2\)
c) Chứng minh rằng \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
d) Chứng minh rằng \(\left(ax+by\right)^2+\left(ay-bx\right)^2=\left(a^2+b^2\right)\left(x^2+y^2\right)\) với mọi số thực a , b , x , y
7 Chứng minh các đẳng thức sau
a) \(a^2+b^2=\left(a+b\right)^2-2ab\) ; b) \(a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2\)
c) \(a^6+b^6=\left(a^2+b^2\right)\left[\left(a^2+b^2\right)^2-3a^2b^2\right]\)
d) \(a^6-b^6=\left(a^2-b^2\right)\left[\left(a^2+b^2\right)^2-a^2b^2\right]\)
Rút gọn :
\(a,A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\\ b,B=-1^2+2^2-3^2+4^2-...-99^2+100^2\\ c,C=-1^2+2^2-3^2+4^2-...+\left(-1\right)^n\cdot n^2\\ d,D=3\cdot\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\\ e,E=\left(a+b+c\right)^2+\left(a+b-c\right)^2-2\left(a+b\right)^2\\ g,G=\left(a+b+c+d\right)^2+\left(a+b-c-d\right)^2+\left(a+c-b-d\right)^2+\left(a+d-b-c\right)^2\\ h,H=\left(a+b+c\right)^3-\left(b+c-a\right)^3-\left(a+c-b\right)^3+\left(a+b-c\right)^3\\ i,I=\left(a+b\right)^3+\left(b+c\right)^3+\left(c+a\right)^3-3\left(a+b\right)\left(c+b\right)\left(c+a\right)\)
Mọi người ơi, giúp mk vs, đc câu nào hay câu ấy ! Help me!!!!!!!!!!!!!!!!!!
Cho biểu thức
A= \(\left[\frac{3}{2}\left(x^4-\frac{x^4+1}{x^2+1}\right).\frac{x^3-x\left(4x-1\right)-4}{x^7+6x^6-x-6}\right]:\frac{x^2+29x+78}{3x^2+12x-36}\)
a) Rút gọn A
b) Tìm x nguyên để A có giá trị nguyên
Cho \(x+y+z=0\)
Chứng minh rằng: \(a^5\left(b^2+c^2\right)+b^5\left(a^2+c^3\right)+c^5\left(a^2+b^2\right)=\dfrac{1}{2}\left(a^3+b^3+c^3\right)\left(a^4+b^4+c^4\right)\)
Bài 1: Tìm x:
a) \(\left|x+\dfrac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\)
b) \(\left|\dfrac{5}{3}x\right|=\left|-\dfrac{1}{6}\right|\)
c) \(\left|\dfrac{3}{4}x-\dfrac{3}{4}\right|-\dfrac{3}{4}=\left|-\dfrac{3}{4}\right|\)
Bài 2: Tìm x,y:
a) \(\left|\dfrac{1}{2}-\dfrac{1}{3}+x\right|=\dfrac{1}{4}-\left|y\right|\)
b) \(\left|x-y\right|+\left|y+\dfrac{9}{25}\right|=0\)
Bài 3: Tìm giá trị nhỏ nhất:
a) A= \(\left|x+\dfrac{15}{19}\right|-1\)
b) B= \(\dfrac{1}{2}+\left|x-\dfrac{4}{7}\right|\)
Bài 4: Tìm giá trị lớn nhất:
a) A= 5- \(\left|\dfrac{5}{3}-x\right|\)
b) B= 9-\(\left|x-\dfrac{1}{10}\right|\)
I.trắc nghiệm
1.giá trị của dâ thức -x\(^3+3x\) khi x=-1 là
a.2 b.-4 c.4 d.-2
2.nhân tử * ở vế trái của hằng đẳng thức a\(^3-9a=\left(a^2+3a\right).\)* là
a.a b.-a c.3-a d.a-3
3.kết quả của phép chia \(\left(x^3-1\right):\left(x-1\right)\) là
a.x\(^2+x+1\) b.x^2-x+1 c.(x-1)^2 d.x^2-1
4.đa thức thích hợp điền vào chỗ ... của đẳng thức \(\dfrac{...}{x^2-9}=\dfrac{x}{x+3}\)
a.x^2+3 b.x^2-3 c.x^2-3x d.x^2+3x
5. hình nào vừa có tâm đối xứng vừa có trục đối xứng
a.hình bình hành b.hình thang cân c.hình thang vuông d.hình thoi
Tính nhanh giá trị của biểu thức:
\(A=\dfrac{\left(2^4+2^2+1\right)\left(4^4+4^2+1\right)\left(6^4+6^2+1\right)\left(8^4+8^2+1\right)\left(10^4+10^2+1\right)}{\left(3^4+3^2+1\right)\left(5^4+5^2+1\right)\left(7^4+7^2+1\right)\left(9^4+9^2+1\right)\left(11^4+11^2+1\right)}\)
a) \(\sqrt{2-\sqrt{3}}\left(\sqrt{6}-\sqrt{2}\right)\left(2+\sqrt{3}\right)\)
b)\(\frac{\left(\sqrt{a}-1\right)\left(\sqrt{6}-\sqrt{2}\right)\left(a-\sqrt{ab}\right)}{\left(a\sqrt{a}-a\right)\left(a-b\right)}\) (Với a,b >0 và a khác 1)