1) \(\left(\dfrac{-3}{4}\right)^{3x+1}=\dfrac{81}{256}\) 6) \(\left(8x-1\right)^{2n-4}=5^{2n-4}\)
2) \(172.x^2-\dfrac{7^9}{98^3}=\dfrac{1}{2^3}\) 7) \(\left(\dfrac{1}{2x}-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}=0\)
3) \(\left(x-\dfrac{2}{9}\right)^3=\left(\dfrac{2}{3}\right)^6\)
4) \(\left(x+2\right)^2+\left(y-\dfrac{1}{10}\right)^2=0\)
5) \(\left(x-7\right)^{n+1}-\left(x-7\right)^{n+11}=0\)
Giúp mk với!!!!!
Bài 1:cho phương trình
a,\(\left(x-1\right)^3-x\left(x-1\right)^2=5x\left(2-x\right)-11\left(x+2\right)\)
b,\(\dfrac{\left(x+10\right)\left(x+4\right)}{12}-\dfrac{\left(x+4\right)\left(2-x\right)}{4}=\dfrac{\left(x+10\right)\left(x-2\right)}{3}\)
c,\(\dfrac{2\left(x-3\right)}{7}+\dfrac{x-5}{3}=\dfrac{13x+4}{21}\)
d,\(\dfrac{2x-1}{5}-\dfrac{x-2}{3}=\dfrac{x+7}{5}\)
e,\(\left(x-2\right)^3+\left(3x-1\right)\left(3x+1\right)=\left(x+1\right)^3\)
Tính GTCBT
\(A=\dfrac{4x^4+1}{4\left(x+1\right)^2}\cdot\dfrac{4\left(x+2\right)^2+1}{4\left(x+3\right)^4+1}\cdot\cdot\cdot\dfrac{4\left(x+10\right)^4+1}{4\left(x+11\right)^4+1}\)
Tại x =19,092014
Tính:
a, \(\dfrac{1}{3}-\dfrac{3}{4}-\left(-\dfrac{3}{5}\right)+\dfrac{1}{64}-\dfrac{2}{9}-\dfrac{1}{36}+\dfrac{1}{15}\)
b, \(\left(3-\dfrac{1}{4}+\dfrac{2}{3}\right)-\left(5-\dfrac{1}{3}-\dfrac{6}{5}\right)-\left(6-\dfrac{7}{4}-\dfrac{3}{2}\right)\)
tính giá trị của biểu thức : \(\dfrac{2.1+1}{\left(1^2+1\right)^2}+\dfrac{2.2+1}{\left(2^2+2\right)^2}+\dfrac{2.3+1}{\left(3^2+3\right)^2}+...+\dfrac{2.2015+1}{\left(4^2+4\right)^2}+\dfrac{2.2016+1}{\left(5^2+5\right)^2}\)
Tính giá trị của biểu thức sau:
\(A=\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)...\left(29^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)...\left(30^4+\frac{1}{4}\right)}\)
a, (x-1)3 - x(x-1)2 = 5(2-x) - 11(x+2)
b, (x-2)3 + (3x-1)(3x+1) = (x+1)3
c, \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{5}\)
d, \(\frac{2\left(x-3\right)}{7}+\frac{x-5}{3}=\frac{13x+4}{21}\)
e, \(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{\left(x+4\right)\left(2-x\right)}{4}=\frac{\left(x+10\right)\left(x-2\right)}{3}\)
Bài 1: Tìm x:
a) \(\left|x+\dfrac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\)
b) \(\left|\dfrac{5}{3}x\right|=\left|-\dfrac{1}{6}\right|\)
c) \(\left|\dfrac{3}{4}x-\dfrac{3}{4}\right|-\dfrac{3}{4}=\left|-\dfrac{3}{4}\right|\)
Bài 2: Tìm x,y:
a) \(\left|\dfrac{1}{2}-\dfrac{1}{3}+x\right|=\dfrac{1}{4}-\left|y\right|\)
b) \(\left|x-y\right|+\left|y+\dfrac{9}{25}\right|=0\)
Bài 3: Tìm giá trị nhỏ nhất:
a) A= \(\left|x+\dfrac{15}{19}\right|-1\)
b) B= \(\dfrac{1}{2}+\left|x-\dfrac{4}{7}\right|\)
Bài 4: Tìm giá trị lớn nhất:
a) A= 5- \(\left|\dfrac{5}{3}-x\right|\)
b) B= 9-\(\left|x-\dfrac{1}{10}\right|\)
Giải các phương trình sau:
a) \(x^2+\dfrac{2x}{x-1}=8\)
b) \(\dfrac{x^2+2x+1}{x^2+2x+2}+\dfrac{x^2+2x+2}{x^2+2x+3}=\dfrac{7}{6}\)
c) \(\dfrac{x+4}{x-1}+\dfrac{x-4}{x+1}=\dfrac{x+8}{x-2}+\dfrac{x-8}{x+2}+6\)
d) \(\left(x^2+6x+8\right)\left(x^2+8x+15\right)=24\)
e) \(\left(x^2+x-2\right)\left(x^2+9x+18\right)=28\)
f) \(3\left(-x^2+2x+3\right)^4-26x^2\left(-x^2+2x+3\right)^2-9x^4=0\)
g) \(x^4+6x^3+11x^2+6x+1=0\)
h) \(\left(x-3\right)\left(x-5\right)\left(x-6\right)\left(x-10\right)-24x^2=0\)
i) \(\left(x+2\right)^4+\left(x+8\right)^4=272\)