Lời giải:
Đặt \(\overrightarrow {n_P}=(a,b,c)\). Vì \(\overrightarrow {AB}=(-1,-2,3)\perp \overrightarrow{n_P}\Rightarrow a+2b-3c=0(1)\)
Vì $(P)$ đi qua $A(1,0,0)$ nên phương trình mp $(P)$ :\(a(x-1)+by+cz=0\)
Do đó \(d(C,(P))=\frac{|b+c|}{\sqrt{a^2+b^2+c^2}}=\frac{2}{\sqrt{3}}\Rightarrow 4a^2+b^2+c^2=6bc(2)\)
Từ \((1),(2)\Rightarrow 37c^2-54bc+17b^2=0\Leftrightarrow (b-c)(17b-37c)=0\)
TH1: \(b=c\Rightarrow a=3c-2b=b\)
PTMP \((P): b(x-1)+by+bz=0\Leftrightarrow x+y+z-1=0\)
TH2: \(b=\frac{37c}{17}\Rightarrow a=3c-2b=\frac{=23c}{17}\)
PTMP $(P)$ : \(\frac{-23}{17}c(x-1)+\frac{37}{17}cy+cz=0\Leftrightarrow -23x+37y+17z+23=0\)