rust gọn các biểu thức sau
a) A= \(\dfrac{1}{a-b}+\dfrac{1}{a+b}+\dfrac{2a}{a^2+b^2}+\dfrac{4a^3}{a^4+b^4}+\dfrac{8a^7}{a^8+b^8}\)
b ) B= \(\dfrac{1}{a^2+a}+\dfrac{1}{a^2+3a+2}+\dfrac{1}{a^2+5a+6}+\dfrac{1}{a^2+7a+9}+\dfrac{1}{a^2+9a+20}\)
Bài 1: Cho a,b,c là những số dương thỏa mãn: a+b+c=3
CMR: \(\dfrac{a^2}{a+2b^3}+\dfrac{b^2}{b+2c^3}+\dfrac{c^2}{c+2a^3}\ge1\)
Bài 2: Cho a, b, c thỏa mãn: ab+bc+ca=3
CMR: \(\dfrac{a}{2b^3+1}+\dfrac{b}{2c^3+1}+\dfrac{c}{2a^3+1}\ge1\)
Bài 3: Cho a, b, c > 0. CMR: \(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge a+3b\)
Dấu = xảy ra khi a=b=2c
Cho a, b không âm thỏa mãn: \(a^2+b^2=a+b\). Tìm GTNN của biểu thức: \(S=\dfrac{a}{a+1}+\dfrac{b}{b+1}\)
Cho a, b không âm thỏa mãn: \(a^2+b^2=a+b\). Tìm GTNN của biểu thức: \(S=\dfrac{a}{a+1}+\dfrac{b}{b+1}\)
cho a,b>0 và \(a^2+b^2=a+b\). tìm GTNN của \(P=a^4+b^4+\dfrac{2020}{\left(a+b\right)^2}\)
Cho a + b + c = 3 và a, b, c > 0. CMR:
\(\dfrac{a^2}{a+2b^2}+\dfrac{b^2}{b+2c^2}+\dfrac{c^2}{c+2a^2}\ge1\)
Cho a,b,c là các số thực dương thỏa mãn điều kiện abc=1
Chứng minh rằng : \(P=\dfrac{1}{\left(a+1\right)^2}+\dfrac{1}{\left(b+1\right)^2}+\dfrac{1}{\left(c+1\right)^2}+\dfrac{2}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge1\)
Áp dụng BĐT: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) ( với a, b dương), tìm GTNN của biểu thức: \(M=\dfrac{2}{xy}+\dfrac{3}{x^2+y^2}\) với x, y là 2 số dương và x+y=1
Rút gọn phân thức:
\(a,\dfrac{8a^{n+2}+a^{n-1}}{16a^{n+4}+4a^{n+2}+a^n}\)
\(b,\dfrac{\left(n+1\right)!-n!}{\left(n+1\right)!+n!}\)