Cho (O;R) và điểm A nằm ngoài đường tròn (O). Qua A vẽ tiếp tuyến AB tiếp xúc với đường tròn (O) tại B. Vẽ một đường thẳng qua A cắt đường tròn tại hai điểm M và N ( M nằm giữa A và N). Qua M kẻ đường thẳng song song với AB cắt BN tại E. Gọi I là trung điểm của ME. Vẽ dây BQ của đường tròn (O) sao cho BQ đi qua điểm I
a) Chứng minh hai tam giác BMI và tam giác BQM đồng dạng
b)Chứng minh tứ giác QIEN nội tiếp
c) Chứng minh BM.QN=BN.MQ
Cho đường tròn O và đường thẳng d đi qua đường tròn nhưng không qua O
Lấy d cắt O tại hai điểm A,B . chọn điểm M thuộc O nằm ngoài đoạn AB
kẻ MC,MD là tiếp tuyến của (O), ( C,D thuộc (O) )
Kẻ hai tiếp tuyến của (O) cắt (O) tại A,B
giao điểm hai tiếp tuyến đó là I
CMR I,C,D thẳng hàng
Cho đường tròn (O)đường kính AB. Trên tia đối của tia AB lấy điểm C
(C không trùng với B). Kẻ tiếp tuyến CD với đường tròn (O) (D là tiếp điểm), tiếp tuyến tại A của đường tròn (O) cắt đường thẳng CD tại E.
a) Chứng minh rằng tứ giác AODE nội tiếp.
b) Gọi H là giao điểm của AD và OE, K là giao điểm của BE với đường tròn (O) (K không trùng với B). Chứng minh \(E\widehat{H}K=K\widehat{B}A\)
Cho đường tròn (O;R) và các tiếp tuyến AB, AC cắt nhau tại A nằm ngoài đường tròn (B, C là các tiếp điểm). Gọi H là giao điểm của BC và OA.
a) CMR: OA vuông góc với BC và \(OH.OA=R^2\)
b) Kẻ đường kính BD của đường tròn (O) và kẻ đường thẳng CK vuông góc với BD (K thuộc D). CMR: AO song song với CD và AC.CD=CK.AO
c) Gọi I là giao điểm của AD và CK. CMR: Tam giác BIK và tam giác CHK có diện tích bằng nhau
Từ điểm A nằm ngoài đường tròn tâm O kẻ hai tiếp tuyến AB và AC( B và C là tiếp điểm). Đường thằng đi qua A cắt (O) tại D và E ( D nằm giữa A và E), kẻ dây cung EN song song với BC, DN cắt BC tại I. Chứng minh rằng BI= CI
Cho tam giác ABC có ba góc nhọn, AB<AC, nội tiếp đường tròn tâm O. Tiếp tuyến tại A của đường tròn (O) cắt đường thẳng BC tại M. Kẻ đường cao BF của tam giác ABC(F thuộc AC). Từ F kẻ đường thẳng song song với MA cắt AB tại E. Gọi H là giao điểm của CE và BF; D là giao điểm của AH và BC.
a) Cmr \(MA^2=MB.MC\) và \(\dfrac{MC}{MB}=\dfrac{AC^2}{AB^2}\)
b) Cmr AH vuông góc với BC tại D
c) Gọi I là trung điểm BC. Cmr 4 điểm E,F,D,I cùng nằm trên 1 đường tròn
d) Từ H kẻ đường thẳng vuông góc với HI cắt AB, AC lần lượt tại P và Q. Cmr H là trung điểm của PQ
Cho đường tròn tâm O, đường kính AB. Kẻ tiếp tuyến tại B với đường tròn (O), trên tiếp tuyến lấy điểm C. Qua A kẻ đường thẳng song song với OC và cắt (O) tại D. Cmr: CD là tiếp tuyến của đường tròn (O).
Từ điểm M nằm ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB (A, B là các tiếp điểm). Kẻ đường kính AC, tiếp tuyến tại C của đường tròn cắt AB tại D. Gọi I là trung điểm của MO.
a) Chứng minh 4 điểm M, A, O, B cùng thuộc một đường tròn.
b) Chứng minh AB.AD = AC2 .
c) Tia AI cắt đường thẳng BC tại K. Chứng minh tứ giác MOCK là hình bình hành.
Cho đường tròn tâm O, điểm A nằm ngoài (O). Vẽ các tiếp tuyến AM, AN với (O). Qua A vẽ 1 đường thẳng cắt (O) tại 2 điểm B,C ( B năm giữa A và C ). Gọi H là trung điểm của BC
a) Cmr: tứ giác ANHM nội tiếp
b) Cmr: \(AN^2\) = AB . AC
c) Đường thẳng qua B và song song với AN cắt MN tại E
Cmr: EH // NC
mình đang cần gấp ạ!!!!!!!!!!!!!! help me