a, ĐKXĐ: x\(\ge0;x\ne1;x\ne9\)
b, A=\(\dfrac{1}{5}\)
\(\Leftrightarrow\dfrac{\sqrt{x}-3}{\sqrt{x}+1}=\dfrac{1}{5}\)
\(\Rightarrow5\sqrt{x}-15-\sqrt{x}-1=0\)
\(\Leftrightarrow4\sqrt{x}-16=0\)
\(\Leftrightarrow\sqrt{x}-4=0\)
\(\Leftrightarrow x=16\)
d: Để A là số nguyên thì \(\sqrt{x}+1-4⋮\sqrt{x}+1\)
=>\(\sqrt{x}+1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(x\in\left\{0;1;9\right\}\)
e: \(A=\dfrac{\sqrt{x}+1-4}{\sqrt{x}+1}=1-\dfrac{4}{\sqrt{x}+1}\)
\(0< \dfrac{4}{\sqrt{x}+1}< =4\)
\(\Leftrightarrow0>-\dfrac{4}{\sqrt{x}+1}>=-4\)
=>1>A>=-3
A=0 khi căn x-3=0
=>x=9
A=-1 khi \(\sqrt{x}-3=-\sqrt{x}-1\)
=>\(2\sqrt{x}=2\)
=>x=1
A=-2 khi \(-2\sqrt{x}-2=\sqrt{x}-3\)
=>-3 căn x=-1
=>x=1/9
A=-3 khi \(-3\sqrt{x}-3=\sqrt{x}-3\)
=>x=0