a) đk: \(x\ne0;4\); \(x>0\)
P = \(\left[\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{1}{\sqrt{x}-2}\right]\times\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)\)
= \(\dfrac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\times\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)\)
= \(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-2\right)}.\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
b) Để P < \(\dfrac{1}{2}\)
<=> \(\dfrac{\sqrt{x}-1}{\sqrt{x}}< \dfrac{1}{2}\)
<=> \(1-\dfrac{1}{\sqrt{x}}< \dfrac{1}{2}\)
<=> \(\dfrac{1}{\sqrt{x}}>\dfrac{1}{2}\)
<=> \(\sqrt{x}< 2\)
<=> x < 4
<=> 0 < x < 4
a) ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne4\end{matrix}\right.\)
c) Để P nguyên thì \(\sqrt{x}-1⋮\sqrt{x}\)
\(\Leftrightarrow-1⋮\sqrt{x}\)
\(\Leftrightarrow\sqrt{x}\inƯ\left(-1\right)\)
\(\Leftrightarrow\sqrt{x}\in\left\{1;-1\right\}\)
hay x=1(thỏa ĐK)
Vậy: Khi P nguyên thì x=1
a) Ta có: \(P=\left(\dfrac{\sqrt{x}+1}{x-2\sqrt{x}}-\dfrac{1}{\sqrt{x}-2}\right)\left(x-3\sqrt{x}+2\right)\)
\(=\left(\dfrac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\cdot\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)