a/ Cho x, y, z thỏa mãn: x + y + z = 3. Tìm GTLN của B = xy + yz + xz
b/ Cho a, b, c có tổng = 1 (a, b, c > 0). CM: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9.\)
cho a,b,c là cá số thực thoả mãn
a+b+c=2022 và\(\dfrac{1}{a}\)+\(\dfrac{1}{b}\)+\(\dfrac{1}{c}\)=\(\dfrac{1}{2022}\)
tính giá trị của biểu thức B=\(\dfrac{1}{a^{2021}}\)+\(\dfrac{1}{b^{2021}}\)+\(\dfrac{1}{c^{2021}}\)
Thực hiện phép tính:
1) \(A=\dfrac{1}{\left(a-b\right)\left(a-c\right)}+\dfrac{1}{\left(b-a\right)\left(b-c\right)}+\dfrac{1}{\left(c-a\right)\left(c-b\right)}\)
2) \(B=\dfrac{1}{a\left(a-b\right)\left(a-c\right)}+\dfrac{1}{b\left(b-a\right)\left(b-c\right)}+\dfrac{1}{c\left(c-a\right)\left(c-b\right)}\)
3, \(C=\dfrac{bc}{\left(a-b\right)\left(a-c\right)}+\dfrac{ac}{\left(b-a\right)\left(b-c\right)}+\dfrac{ab}{\left(c-a\right)\left(c-b\right)}\)
4) \(D=\dfrac{a^2}{\left(a-b\right)\left(a-c\right)}+\dfrac{b^2}{\left(b-a\right)\left(b-c\right)}+\dfrac{c^2}{\left(c-a\right)\left(c-b\right)}\)
CHo 3 số thực a,b,c thỏa mãn \(\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}=3\). chứng minh rằng\(\dfrac{27a^2}{c\left(c^2+9a^2\right)}+\dfrac{b^2}{a\left(4a^2+b^2\right)}+\dfrac{8c^2b}{b\left(9b^2+4c^2\right)}\ge\dfrac{3}{2}\)
Cho 3 số thực a,b,c thỏa mãn \(\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}=3\).Chứng minh rằng
\(\dfrac{27a^2}{c\left(c^2+9a^2\right)}+\dfrac{b^2}{a\left(4a^2+b^2\right)}+\dfrac{8c^2}{b\left(9b^2+4c^2\right)}\ge\dfrac{3}{2}\)
Chứng minh rằng: Nếu \(\dfrac{a^2-bc}{a\left(1-bc\right)}=\dfrac{b^2-ac}{b\left(1-ac\right)}\) (Với các điều kiện để biểu thức có nghĩa) thì \(a+b+c=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
chứng minh rằng : nếu \(a+\dfrac{1}{b}=b+\dfrac{1}{c}=c+\dfrac{1}{a}\) thì a2b2c2=1 hay a=b=c
Chứng minh BĐT: \(\left(a^2+\dfrac{1}{a^2}\right)\left(b^2+\dfrac{1}{b^2}\right)\left(c^2+\dfrac{1}{c^2}\right)\ge8\forall a,b,c\ne0\)
Cho các số a,b,c thỏa mãn : \(a+b+c=\dfrac{3}{2}\)
Chứng minh rằng : \(a^2+b^2+c^2\ge\dfrac{3}{4}\)