CHo 3 số thực a,b,c thỏa mãn \(\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}=3\). chứng minh rằng\(\dfrac{27a^2}{c\left(c^2+9a^2\right)}+\dfrac{b^2}{a\left(4a^2+b^2\right)}+\dfrac{8c^2b}{b\left(9b^2+4c^2\right)}\ge\dfrac{3}{2}\)
Thực hiện phép tính:
1) \(A=\dfrac{1}{\left(a-b\right)\left(a-c\right)}+\dfrac{1}{\left(b-a\right)\left(b-c\right)}+\dfrac{1}{\left(c-a\right)\left(c-b\right)}\)
2) \(B=\dfrac{1}{a\left(a-b\right)\left(a-c\right)}+\dfrac{1}{b\left(b-a\right)\left(b-c\right)}+\dfrac{1}{c\left(c-a\right)\left(c-b\right)}\)
3, \(C=\dfrac{bc}{\left(a-b\right)\left(a-c\right)}+\dfrac{ac}{\left(b-a\right)\left(b-c\right)}+\dfrac{ab}{\left(c-a\right)\left(c-b\right)}\)
4) \(D=\dfrac{a^2}{\left(a-b\right)\left(a-c\right)}+\dfrac{b^2}{\left(b-a\right)\left(b-c\right)}+\dfrac{c^2}{\left(c-a\right)\left(c-b\right)}\)
Chứng minh BĐT: \(\left(a^2+\dfrac{1}{a^2}\right)\left(b^2+\dfrac{1}{b^2}\right)\left(c^2+\dfrac{1}{c^2}\right)\ge8\forall a,b,c\ne0\)
Chứng minh rằng: Nếu \(\dfrac{a^2-bc}{a\left(1-bc\right)}=\dfrac{b^2-ac}{b\left(1-ac\right)}\) (Với các điều kiện để biểu thức có nghĩa) thì \(a+b+c=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Giải các phương trình :
a) \(\dfrac{1}{2x-3}-\dfrac{3}{x\left(2x-3\right)}=\dfrac{5}{x}\)
b) \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)
c) \(\dfrac{x+1}{x-2}+\dfrac{x-1}{x+2}=\dfrac{2\left(x^2+2\right)}{x^2-4}\)
d) \(\left(2x+3\right)\left(\dfrac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\dfrac{3x+8}{2-7x}+1\right)\)
a)\(4x-12=0\)
b)\(x\left(x+1\right)-\left(x+2\right)\left(x-3\right)=7\)
c)\(\dfrac{x-3}{x+1}=\dfrac{x^2}{x^2-1}\)
Bài 1: Giải các phương trình sau:
a. 7-( 2x + 4 ) = - (x+4)
b.\(\dfrac{2x}{x+1}=\dfrac{x^2-x+8}{\left(x+1\right)\left(x-4\right)}\)
c.\(\dfrac{2\left(3x+5\right)}{3}-\dfrac{x}{2}=5-\dfrac{3\left(x+1\right)}{4}\)
Giair các phương trình sau
\(a,\dfrac{3x^2+7x-10}{x}=0\) \(b,\dfrac{4x-17}{2x^2+1}=0\) \(c,\dfrac{\left(x^2+2x\right)-\left(3x-6\right)}{x+2}=0\)
\(d,\dfrac{x^2-x-6}{x-3}=0\) \(e,\dfrac{2x-5}{x+5}=3\) \(f,\)\(\dfrac{5}{3x+2}=2x-1\)
\(g,\dfrac{x^2-6}{x}=x+\dfrac{3}{2}\) \(h,\dfrac{4}{x-2}-x+2=0\)
Giups mình với , mik đang cần gấp
a) \(9x^2-1=\left(3x-1\right)\left(5x+8\right)\)
b) \(2x^3-5x^2+3x=0\)
c) \(9x^2-16-x\left(3x+4\right)=0\)
d) \(\dfrac{5x+4}{3}-1=\dfrac{3x-2}{4}\)